Panasonic

KW9M Eco-POWER METER User's Manual

Cautions for Your Safety

Read the manual carefully before installing, running and maintenance for proper operation. Before using, master the knowledge of the equipment, safety information and all of other notes

This manual uses two safety flags to indicate different levels of danger.

WARNING

A handling error could cause serious physical injury to an operator and in the worst case could even be fatal.

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. In the USA, see NFPA 70E.
- Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.
- ●Do not use this product in areas with inflammable gas. It could lead to an explosion.
- Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.
- Do not open the secondary side of CT during power on the primary side current. It might cause electric shock or CT breakdown.

CAUTION

A handling error could cause serious physical injury to an operator or damage to the equipment.

- ●To prevent abnormal exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assured in these specifications.
- Do not dismantle or remodel the product. It could lead to abnormal exothermic heat or smoke generation.
- Do not touch the terminal while turning on electricity. It could lead to an electric shock.
- •Use the external devices to function the emergency stop and interlock circuit.
- ●Connect the wires or connectors securely. The loose connection might cause abnormal exothermic heat or smoke generation.
- Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It might cause exothermic heat or smoke generation.
- ●Do not undertake construction (such as connection and disconnection) while the power supply is on.
- Never remove the terminal block under applying current to load. It might cause electric shock or CT breakdown.
- Do not use at secondary side circuit of inverter. It might cause exothermic heat or damage.

Copyright and trademark

- Panasonic Industrial Devices SUNX Co., Ltd. owns the copyright of this manual.
- We stiffly refuse the reproduction of without permission from this manual.
- Modbus Protocol is a communication protocol that the Modicon Inc. developed for PLC and Modbus is the registered trademark of Schneider Electric.
- Other company names and the product names are the trademarks or registered trademarks of each company.

Introduction

Thank you very much indeed for purchasing "KW9M Eco-POWER METER".
In this manual, we explain the usage of "KW9M Eco-POWER METER" in detail.
Please use it correctly after understanding the content enough.

Table of Contents

Cautions before using	i
Chapter 1 Unit's Outline	
1.1 Measurement outline	
1.2 Measurement items	
1.3 Logging items	
Chapter 2 Parts Name and Working	
2.1 Parts Names	
2.2 Key's functions	
2.3 Indication on KW9M Eco-POWER METER	
Chapter 3 Wiring	
3.1 Main unit terminal arrangement	
3.2 Wiring Diagrams	
3.3 How to attach the Current Transformer (CT)	
3.4 RS485 Communication	
3.5 Low Voltage Directive	
3.6 Symbol List	
Chapter 4 Settings	
4.1 Setting Flow	
4.2 Password entry	
4.3 Password initialize	
4.4 How to Set	
4.4.1 Settings for power measurement	
4.4.2 Settings for demand measurement	
4.4.3 Settings for communication	
4.4.4 Settings for optional functions	
4.4.5 Password setting	
4.4.6 Confirmation window	
Chapter 5 Various Functions	32
5.1 Demand function	
5.1.1 Block interval demand	32
5.1.2 Current Demand	33
5.1.3 Max. demand value	
5.1.4 Working at power failure and at recovery	33
Chapter 6 Display of each Value	
6.1 Working of Monitor display	
6.2 Working of Monitor Display	35
6.2.1 Instantaneous power	
6.2.2 Instantaneous power of each phase / each circuit	
6.2.3 Total integral power	
6.2.4 Total integral export power	
6.2.5 Integral power of each phase / each circuit	
6.2.6 Integral export power of each phase / each circuit	47
6.2.7 Current	
6.2.8 Voltage	
6.2.9 Power factor	
6.2.10 Frequency	
6.2.11 Current THD	
6.2.12 Voltage THD	
6.2.13 Conversion value for integral active power	
6.2.14 Conversion value for integral export power	
6.2.15 Temperature	
6.3 Working of Logging Mode	
6.3.1 Max. demand value	
6.4 Working of Demand Mode	
6.4.1 Block Interval Demand (Sliding block, fixed block)	
U.T. I DIOCK INTERVAL DEMAND (SHUING DIOCK, NACH DIOCK)	ວວ

Chapter 7 Communications	ວວ
7.1 Communication Procedures	55
7.2 Communication timing	55
7.3 MEWTOCOL Communication	
7.3.1 Overview of MEWTOCOL-COM (RS485)	56
7.3.2 Data Register List	57
7.3.3 Error Codes	63
7.3.4 Command	64
7.4 MODBUS (RTU) Communication	66
7.4.1 Overview of MODBUS (RTU)	66
7.4.2 Data Register List (MODBUS communication)	
7.5 DL/T645-2007 communication	77
7.5.1 Overview of DL/T645-2007	77
7.5.2 Data list	83
Chapter 8 How to update the firmware	85
8.1 How to install USB driver	85
8.2 How to update the firmware	86
8.2.1 Connect PC and Eco-POWER METER	86
8.2.2 Prepare Eco-POWER METER to update	86
8.2.3 Update the firmware using KW Version Upgrade Tool	86
Chapter 9 Specifications	
9.1 Main unit	90
9.2 Input Specifications	91
9.3 Communication Specifications	92
9.4 Self-diagnostic function	93
9.5 Power Failure Memory	93
Chapter 10 Mounting	94
10.1 Dimensions	
10.1.1 Main unit	94
10.2 Panel mounting	
• 	

■ About this product

Eco-POWER METER is designed chiefly to manage saving energy. It is neither nor can it be legally used for billing.

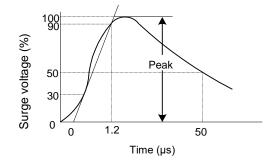
Installation environment

♦Do not use the Unit in the following environments.

- •Where the unit will be exposed to direct sunlight and where the ambient temperature is outside the range of -25 to 55 °C.
- •Where the ambient humidity is outside the range of 30 to 85 % RH (at 20°C), non-condensing and where condensation might occur by sudden temperature changes
- •Where inflammable or corrosive gas might be produced
- •Where the unit will be exposed to excessive airborne dust or metal particles
- •Where the unit will be exposed to water, oil or chemicals
- •Where organic solvents such as benzene, paint thinner, alcohol, or strong alkaline solutions such as ammonia or caustic soda might adhere to the product
- •Where direct vibration or shock might be transmitted to the product, and where water might wet the product
- •Where the place near high-voltage cable, high-voltage device, power line, power device.
- •Where the place near a machinery with transmission function such as amateur radio.
- •Where the place near a machinery which occurs the big switching serge

♦Please use the Unit according to the specifications described in this manual. Otherwise, it may malfunction or cause fire and an electric shock.

- •Connect to the power supply in compliance with the rating.
- •Refer to the wiring diagram to ensure proper wiring for the power supply, input and output.
- •Do not perform wiring or installation with a live line. It may also lead to circuit burnout or fire by way of the secondary CT side opening.


■ Installation

- •Eco-POWER METER is designed to be used in a control panel.
- •The power supply terminal and voltage input terminal of the main unit is common. Therefore if additional noise effects the power supply line, incorrect measurements may result.
- •Installation and wiring must be performed by expert personnel for electrical work or electric piping.
- •Never remove the terminal block under applying current to load. It might cause electric shock or CT breakdown.
- •Do not add an excess power to the display. It might break the inner liquid crystal.
- Although the case is made from fireproof resin, do not mount it next to flammable materials. Also, avoid placing it directly on top of materials that catch fire easily.
- •If the operating power supply surge exceeds the following value, the internal circuit could be destroyed, so be sure to use a surge absorption element.

Surge voltage 6,000V
Standard surge waveform

The above value is the surge-voltage resistance at \pm (1.2/50) μ s of single-polarity full-wave voltage.

Surge wave form [± (1.2/50) µs single-polarity full-wave voltage]

•External noise up to the level shown below is treated as noise voltage, but levels higher than this could lead to malfunctioning or damage to the internal circuit. Although the case is made from fireproof resin, do not mount it next to flammable materials.

	Between operating power supply terminals		
Noise voltage	1,500V		

Noise wave form (noise simulator) Rise time: Pulse width: 1 µs, 50 ns

Polarity: Cycle: 10 ms

Note) Accurate measurement may not be possible if excessive noise gets added to the input line.

·This product is designed to be used only with our options.

Options from other companies are not compatible.

■ As to measurement

·If there is some distortion by harmonic or waveform, it may not measure correctly. Please check with the actual system before adopts it.

- •It might not measure an instantaneous current such as an inrush current or an welding machine.
- •When measuring the below loads, it might not satisfy with the accuracy guarantee.

Out of rating current, Load with low power factor,

Load with winding current, Load with ferromagnetic field

• Power factor operation is a method assuming balanced load. The error might be big when it measures unbalanced load.

■ Static electricity

- •Discharge static electricity touching the grounded metal etc. when you touch the unit.
- •Excessive static electricity might be generated especially in a dry place.

■ Cleaning

•Wipe dirt of the main unit with soft cloth etc. When thinner is used, the unit might deform or be discolored.

■ Power supply

- •Connect a breaker to the voltage input part for safety reasons and to protect the device.

 The breaker that connects to the voltage input part must arrange at the position easily reached, and display shows it is the breaker of the equipment.
- •Do not turn on the power supply or input until all wiring is completed.

■ Before power on

Please note the following points when turning on power at the first time.

- •Confirm there are neither wiring rubbish nor especially an electrical conduction when installed.
- •Confirm neither the power supply wiring, the I/O wiring nor the power-supply voltage are wrong.
- •Tighten the installation screw and the terminal screw surely.
- •Use an electric wire applicable to the rated current.

■ Before change the setup

Set the password carefully.

In order to avoid unexpected change the settings, it can set password. However, if you forget the password you can't change the settings.

We recommend you to note the password when you set and change the password.

Chapter 1 Unit's Outline

With KW9M Eco-POWER METER, electrical power (voltage, current, etc.), power factor, frequency, etc. are measured using AC voltage and AC current input via one of the following systems: single-phase two-wire system, single-phase three-wire system, three-phase three-wire system or three-phase four-wire system.

This has built-in thermistor to measure the temperature of installation place such as inside the panel board for your reference.

■ Eco-POWER METER is designed chiefly to manage saving energy. It is neither intended nor can it be legally used for billing.

Model number	AKW91110	
Model name	KW9M Eco-POWER METER Standard type	

■Firmware

For using the additional functions of KW9M Eco-POWER METER standard type

Functions	Supported version
-Demand measurement -Measure current THD and voltage THD -Max value for primary side current of CT: 65,535A -Setting of update cycle -Readout power factor status lead/lag	Ver.1.10 or more
-Registers for reset function	Ver.1.20 or more
-Current cut-off	Ver.1.30 or more
-Measure an integral active power with 0.01Wh unit -115,200 and 57600bps for baud rate	Ver.1.40 or more
-Save monitor display -Initialize the setting parameters	Ver.1.50 or more

Note) You can't use the additional functions without the supported firmware.

1.1 Measurement outline

1.1 Medsarement datine				
Phase/Wire system	Single-phase two-wire (1P2W) Single-phase three-wire (1P3W) Three-phase three wire (3P3W) Three-phase four-wire (3P4W)			
Applicable power system	100V system, 200V system, 400V system			
Measurement circuit	1-circuit (when measuring 1P2W: max. 3-circuit)			
Input measurement voltage	0 to 500VAC			
Input measurement current	1 to 65,535A			
Applicable current sensor	Secondary side current: 1A or 5A			

1.2 Measurement items

Item		Unit	Display data range
	Active	kWh	0.000 to 9999999.9
Integral power (import)	Reactive	kvarh	*Total integral power (import)
(import)	Apparent	kVAh	0 to 2999999
Integral power	Active	kWh	0.000 to 9999999.9
(export)	Reactive	kvarh	*Total integral power (export) 0 to 2999999
	Active	kW	
Instantaneous power	Reactive	kvar	-99999 to 0.000 to 99999
	Apparent	kVA	
Current	Current		0.000 to 8000.0 *1
Voltage (phase / line)		V	0.00 to 99999 *1
Powe	er factor		-1.000 to 0.000 to 1.000 (Fixed 3 places of decimal)
Frequency		Hz	0.00 to 99.99 *1 (Fixed 2 places of decimal)
Conversion value			0.000 to 9999999.9
Temperature		degree C	-100.0 to 0.0 to 100.0 *1 (Fixed 1 place of decimal)
Current THD (total harmonic distortion)	Each phase	%	0.000 to 400.00
Voltage THD (total harmonic distortion)	Each phase	%	0.000 to 400.00

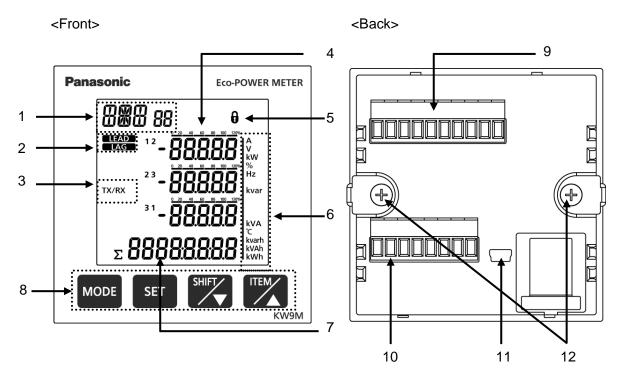
^{*1 &#}x27;Display data range' is the range to be able to indicate with the main unit display, it is not a range that can be measured.

Demand

Ite	Unit	Display data range	
	Active	kW	0.000 to 99999
	Reactive	kvar	
Present demand	Apparent	kVA	
Present demand	Active (export)	kW	
	Reactive (export)	kvar	
	Current	Α	

* Please use this demand function as your standard.
The demand value calculated with this function is not guaranteed.

1.3 Logging items


Item	Record
Max. demand value (active power, reactive power, apparent power, export active power, export reactive power, current)	1 record for each, Max. value

<Glossary> Eco-POWER METER defines as below.

THD (total harmonic distortion)	Ratio of harmonic distortion (voltage or current) for the fundamental frequency. Lower the value shows that the distortion is less.		
Demand by IEC61557-12	Based on IEC61557-12 Performance measuring and monitoring devices (PMD)		
Sliding block in d	It calculates by measured power via CT with setting interval. Set power interval by 1 to 60(min.) (every 1-min.). It calculates demand during latest finished interval and displays. One interval is started every setting time.		
fixed block interval demand		It calculates by measured power via CT with setting interval. Set power interval by 1 to 60 (min.) (every 1-min.) It calculates demand during latest finished interval and displays. After one interval finishes, the next interval starts.	
Current demand		It calculates based on a thermal demand meter. It measures an average current (current demand) within setting interval and the max. value is considered as max. current demand.	

Chapter 2 Parts Name and Working

2.1 Parts Names

1	Item indicator	Measuring mode	Indicate the measuring item	
		Setting mode	Indicate the setting item	
2	Auxiliary mark	Measuring mode	Indicate the power condition *1	
3	TX/RX mark	Measuring mode	Blinking while communication	
4	Load ratio indicator	Measuring mode	Indicate the ratio of load (current) for the rating	
5	Lock mark	Measuring mode Lighting while in lock mode		
6	Unit mark	Measuring mode Indicate the measuring unit		
7	Measurement	Measuring mode Indicate the measuring value		
/	value	Setting mode Indicate the setting value		
8	Keys	Use to operate the unit		
9	Terminal block A			
10	Terminal block B			
11	USB port	USB communication port		
12	Mounting clip	Use to panel mounting (screws:M4x10mm)		

^{*1} Auxiliary mark [LEAD] [LAG] indicates the phase difference between voltage and current.

When current phase delays to voltage phase, [LAG] is indicated.

When current phase leads to voltage phase, [LEAD] is indicated.

When power factor is '1', '0' and '-1', it doesn't display [LEAD] nor [LAG].

2.2 Key's functions

Key	Functions		
	Measuring mode	Shift to setting mode	
<mode></mode>	Setting mode	Shift to setting confirmation mode and measuring mode	
	Logging mode Demand mode	Shift to setting mode	
<set></set>	Setting mode	Set setting items and setting values	
<set> (continuous 3-sec)</set>	Measuring mode Logging mode Demand mode	All keys locked	
(**************************************	Lock mode	Release the lock mode	
	Measuring mode	Select measuring item to display	
<shift ∇=""></shift>	Setting mode	Select a setting value	
	Demand mode	Select demand item to display	
	Measuring mode	Select measuring item to display	
<item δ=""></item>	Setting mode	Select a setting value	
<11 EIVI/△>	Logging mode	Select logging item to display	
	Demand mode	Select demand item to display	
	Measuring mode	Shift to logging mode	
<mode>+<shift ∇=""></shift></mode>	Logging mode	Shift to demand mode	
	Demand mode	Shift to measuring mode	

●Lock mode

It is the mode makes all keys unable. In this mode, you can not input by any keys. When you press <SET> continuously for about 3sec., lock mark is displayed. Press <SET> continuously for about 3sec. again to release Lock mode. When it set to use auto-display functions, the display items are changed automatically. Refer to 4.4.3 setting for optional functions for auto-display functions.

2.3 Indication on KW9M Eco-POWER METER The alphabet is shown as below.

	Α	В	С	D	E	F	G	Н	- 1	J	K
Value display	8	8		8	8	8	8	8			8
Item indicator Top left				88			8	8	I		

	L	М	N	0	Р	Q	R	S	Т	U	٧
Value display	8	8	0	8	8		8	8	8	B	8
Item indicator Top left		8	8	ō	8			5	H		

	W	X	Υ	Z
Value display	8	8	8	
Item indicator Top left	89			

Chapter 3 Wiring

Be sure to wire correctly according to the terminal arrangement and wiring diagrams.

Please connect a fuse or a breaker to power supply part for safety reasons and to protect the device.

This has no built-in power switch, circuit breaker or fuse for measured voltage input parts.

Therefore it is necessary to install them in the circuit near this unit.

Do not turn on the power supply or input until all wiring is completed.

3.1 Main unit terminal arrangement

◆Common for terminal block A, B

Screw size: M2.5

Tightening torque: 0.4 to 0.5Nm

Applicable wire:

(Crimp-type terminal is recommended.)

·single wire / stranded wire

0.5 to 4mm² (AWG20 to 12)

·for 2 pcs.

single wire / stranded wire

2pcs.x0.5 to 2 mm² (AWG20 to 14)

Stripping length: 7 to 8 mm

●Terminal block A (upper) 10P

Terminal number	1	2	3	4	5	6	7	8	9	10
	L +	N -	V1	V2	V3	Vn	NC	SG	A +	В —
Functions		JX supply)	Me	Measured voltage input					RS485	

■Terminal block B (lower) 8P

- I Cillilla bi	001 0 100	WCI) CI						
Terminal number	1	2	3	4	5	6	7	8
	K	L	K	L	K	L	NC	NC
Functions	CT1 CT2			CT3		NO	INC	
		Measured current input						ant

The input voltage to each terminal is as follows.

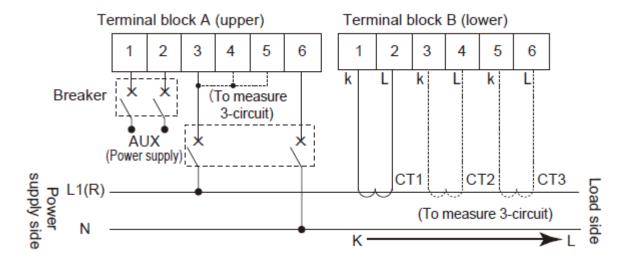
The input voltage to each terminal is as follows.							
Terminal	Phase and wire system	Terminal No.	Input voltage				
Power supply	Single-phase two-wire	1 - 2 (L+ - N—)	85-264V AC [85-264V ○] 100-300V DC [100-300V ==]				
11.3	Single-phase two-wire	3 - 6 (V1-Vn)	0-500VAC [0-500V \sim]	(L-L)			
Measured	Single-phase three-wire	3 - 5 - 6 (V1-V3-Vn)	0-500VAC [0-500V	(L-L) (L-N)			
voltage input	Three-phase three-wire	3 - 5 - 6 (V1-V3-Vn)	0-500VAC [0-500V 3 \sim]	(L-L)			
	Three-phase four-wire	3 - 4 - 5 - 6 (V1-V2-V3-Vn)	0-500VAC [0-500V 3	(L-L) (L-N)			

3.2 Wiring Diagrams

Please connect a breaker or a fuse to the power supply and voltage input part for safety reasons and to protect the device.

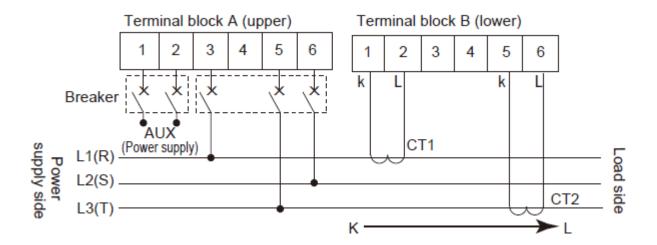
·Recommended breaker: 3 to 15A (IEC approved or UL Listed)

·Recommended fuse : Time-lag fuse rated current 2A (IEC approved or UL Listed)

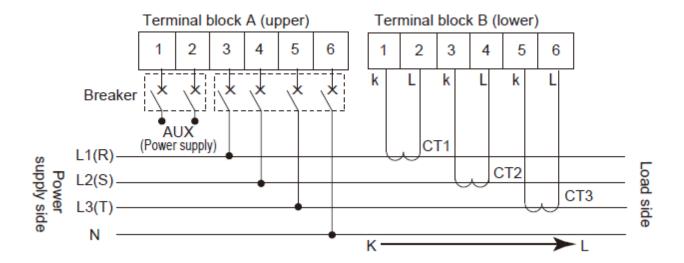

Grounding the secondary side of VT (Voltage transformer) and CT (Current transformer) is not necessary with low-voltage circuit.

*When using several CTs, set each CT approximately 1m apart. If the two CTs are set too close each other, it may not measure accurately due to magnetic field interference.

♦When measuring a load with rated input voltage


Single-phase two-wire system

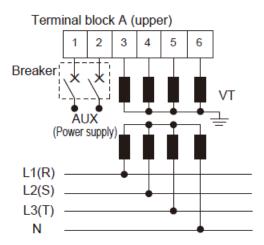
- *One CT is needed to measure single-phase two-wire system.
- *2 CTs are needed to measure 2-circuit and 3 CTs are needed to measure 3-circuit.
- *To measure 2-circuit, wire 3 and 4. To measure 3-circuit, wire 3 and 4 and 5.


Single-phase three-wire/Three-phase three-wire

*2 CTs are needed to measure single-phase three-wire system, three-phase three-wire system.

Three-phase four-wire system

*3 CTs are needed to measure three-phase four-wire system.



Vn terminal should be connected to N-phase which is grounded.

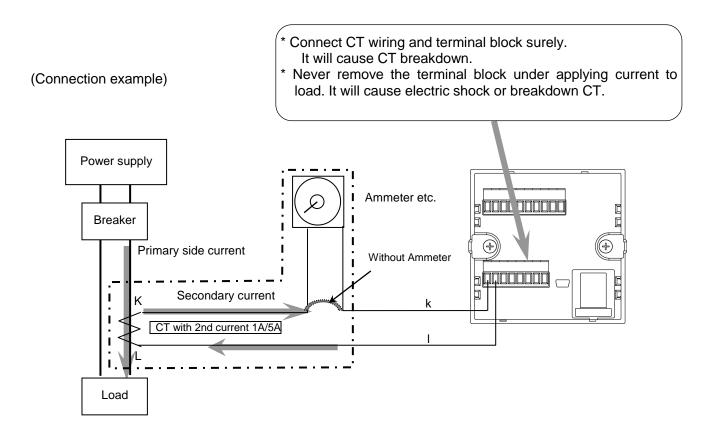
◆When measuring a load with exceed input voltage

Voltage transformer (VT) is needed when you measure a load with over input voltage. Use a VT, those secondary voltage rating is 110V.

Grounding the secondary side of VT and CT is not necessary with low-voltage circuit.

3.3 How to attach the Current Transformer (CT)

DANGER

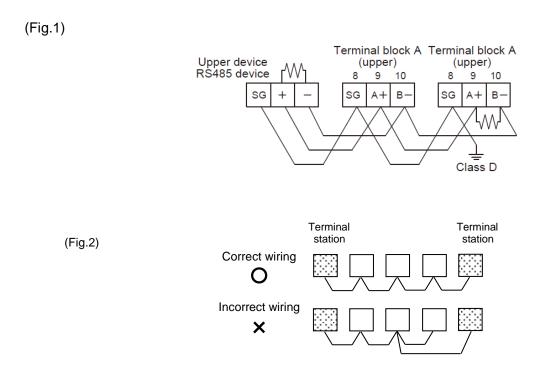

- Never open the secondary circuit of CT under applying current to load.
- Never remove the terminal block under applying current to load.

Will cause electric shock or breakdown CT

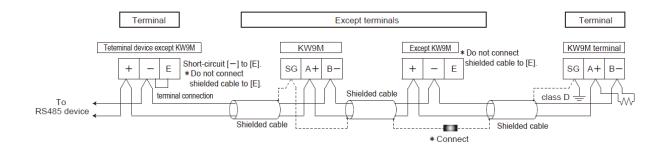
- •Use CT that the secondary side current is 5A or 1A, the rated burden 0.5VA or more.
- •One CT is needed for 1 unit when measuring 1P2W (2 CTs for 2-circuit, 3CTs for 3-circuit). Two CTs are needed when measuring 1P3W/3P3W. Three CTs are needed when measuring 3P4W. Using all CTs for one unit should be the same.
- •Use the applicable wire, or it might cause a breakdown, burnout or electric shock.
- •When connecting CT, connect the secondary side to the terminal of the main unit first, and after that wire the primary side to a load electric wire. Incorrect order might cause an electric shock or break CT.
- •The CT has polarity. Wire correctly according to the K and L marks. **Wrong direction can't measure correctly.**
- ·If there is some distortion by harmonic or waveform, it may not measure correctly. Please check with the actual system before adopts it.
- •Separate the wiring (strong electric part) of the measured voltage input terminal (operating power supply terminal) from the CT cable. It may not satisfy the accuracy due to noise.

◆How to connect CT

- (1) Power off the measured devices.
- (2) Install applicable CT.
- (3) Remove terminal block of KW9M.
- (4) Connect CT to the terminal block.
- (5) Insert terminal stand surely.
- (6) After confirm all wiring correct, turn on the power of the load and KW9M.



◆How to set the parameters for CT


- (1) Select CT type (CT-T) according to the using CT. (Select '5A' if secondary side current of using CT is 5A. Select '1A' if secondary side current of using CT is 1A.)
- (2) Set the primary current of measured CT at primary side current of CT setting mode (CT-1). < ex > If the measured CT is 400A/1A or 400A/5A, set to 400°.
- (3) Connect CT according to the CT direction, power side (K) to load side (L).

3.4 RS485 Communication

- •When using shielded cable for the RS485 transmission line, ground one end.
 Use a class D dedicated earth for grounding. Do not share a ground with other earth lines. (Fig. 1)
- For terminal stations of both side including the upper device, termination resistors should be connected. KW9M Eco-POWER METER doesn't have any built-in termination resistors. Connect 120Ω , 1/2W or more termination resistor between [A+] and [B-] of Eco-POWER METER that is connected the end of RS485 transmission line. The RS485 transmission line shielded cable should be grounded at the end KW9M Eco-POWER METER. (Fig. 1)
- •Be sure to connect with daisy chain the RS485 transmission line between each unit. Do not use a splitter. (Fig. 2)
- •To avoid noise, separate the transmission line from high-voltage line (power supply, voltage line).

♦How to connect KW9M and the other devices with 2-wire system

3.5 Low Voltage Directive

For using under the measurement category III, install varistors or SPD between the lines of power supply and the measured voltage input. Use the varistors or SPD which is complied with European standard and specifications to meet power supply and added current.

When using in the application conforming to EN61010-1/IEC61010-1, make sure to satisfy the following conditions.

- 1) Pulse output part secure only basic insulation. In order to secure reinforced (double) insulation demanded by EN 61010-1/ IEC61010-1, secure basic insulation or more with load side and reinforced (double) insulation with RS485 communication system side.
- 2) Provide the voltage input part with an EN60947-1 or EN60947-3 compliant circuit breaker.
- 3) Use a wire with basic insulation or more for a wire cramped (or connected) CT.
- 4) Vn terminal should be connected to N-phase which is grounded.

[Environmental conditions]

- Overvoltage category II, Pollution degree 2
- Indoor use
- •An ambient temperature of -25 to +55°C
- •An ambient non-condensing humidity of 30 to 85%RH (at 20°C)
- -Altitude of 2000m or less

[Mount the product in a place with]

- ·A minimum of dust, and an absence of corrosive gases
- ·No flammable, explosive gasses
- Few mechanical vibrations or shocks
- No exposure to direct sunlight
- •No large capacity electromagnetic switches or cables through which large current is flowing

3.6 Symbol List

Symbol	Explanation
\sim	AC Voltage
	DC Voltage
CE	CE Mark Confirmation of conformity of the product with the applicable EU directives and compliance with the essential requirements contained in these directives
	Protective insulation, device with protection class II
C US	Products with this mark comply with both the Canadian and the American requirements

Chapter 4 Settings

You can set parameters for measuring and the other functions using the keys on Eco-POWER METER. After wiring Eco-POWER METER and CT, power on and set the parameter for power measurement, Eco-POWER Meter can measure the electric power. In order to use the other functions, set other parameters according to your use.

◆Keys' functions at setting mode

<mode></mode>	Shift to setting mode
<set></set>	Set the items and values
<shift ∇="">, <item δ=""></item></shift>	Select items and change values

◆Parameters for power measurement

Item	Range	Initial value
Phase/Wire system	1P2W, 1P3W, 3P3W 3P4W	1P2W
CT type	1, 5 [A]	5A
Primary side current of CT	1 to 65535 [A]	5A
VT ratio	1.00 to 600.00	1.00
Conversion rate (P)	0.00 to 99.99/1kWh	10.00
Conversion rate (-P)	0.00 to 99.99/1kWh	10.00
Cut off current *	0.1 to 50.0%	0.1

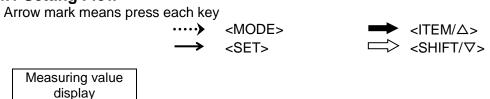
^{*}Cut off current can be set via RS485 communication.

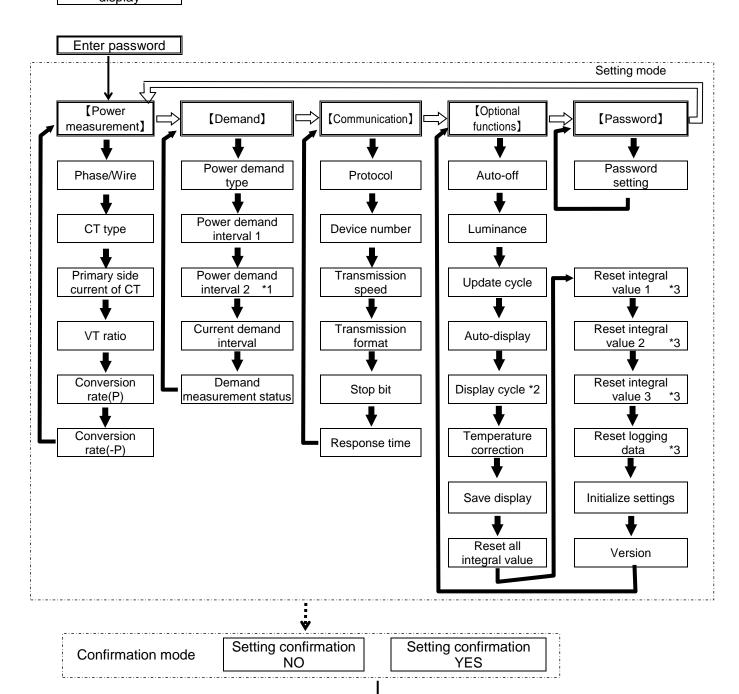
◆Parameters for demand measurement

Item	Range	Initial value
Power demand type	Slide (Sliding block), Fixed (Fixed block),	Peak
Power demand interval 1	1 to 60 [min.]	15
Power demand interval 2	1 to 60 [min.]	1
Current interval	1 to 60 [min.]	15
Demand measurement status	Start, Stop	Stop

◆Parameters for communication

Item		Range		
Protocol	MEWTOCOL, MO DL/T645-2007	MEWTOCOL, MODBUS(RTU), DL/T645-2007		
	MEWTOCOL	1 to 99		
Device number	MODBUS(RTU)	1 to 247	1	
	DL/T645-2007	DL/T645-2007 0 to 9999		
Transmission speed	115200, 57600, 38 2400, 1200 [bps]	3400, 19200, 9600,4800,	19200	
Transmission format	8b-o(8bit odd), 8b 8bit-E(8bit even)	8b-o(8bit odd), 8b-n(8bit none),		
Stop bit	1,2	1		
Response time	1 to 99 [ms]		5	


◆Parameters for optional functions


Item	Range	Initial value
Auto-off	0 to 99 [min.]	1
Luminance	1, 2, 3, 4, 5 (1: dark to 5:light)	3
Update cycle	100 to 1000 [ms]	100
Auto display start	0 to 99 [min.]	10
Display cycle	1 to 99 [sec.]	5
Temperature correction	-100.0 to 100.0	0.0
Save display	YES, NO	NO
Reset all integral value	YES, NO	NO
Reset integral value 1	YES, NO	NO
Reset integral value 2	YES, NO	NO
Reset integral value 3	YES, NO	NO
Reset logging data	YES, NO	NO
Initialize setting parameters	YES, NO	NO
Version		

♦Password

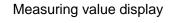
Item	Range	Initial value
Password change	0000 to 9999	0000

4.1 Setting Flow

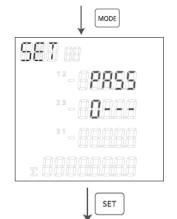
Press <SET> during each item is displayed to change the setting value.

Press <MODE> to display the confirmation window. Select [YES] and press <SET> to decide the setting value. However no value is changed, the confirmation window is skipped and it displays the measuring vaolue display.

Measuring value display


- *1 It skips when [Fixed] is set at power demand type.
- *2 It skips when [0] is set at auto-display setting.
- *3 It skips when [YES] is selested at reset all integral value.

4.2 Password entry


It is necessary to enter password to shift to setting mode.

Enter [0000] and shift to password setting mode when you set password at the first time.

*When setting password, be careful for handling and note it.

Press <MODE> and it shifts to password entry window.

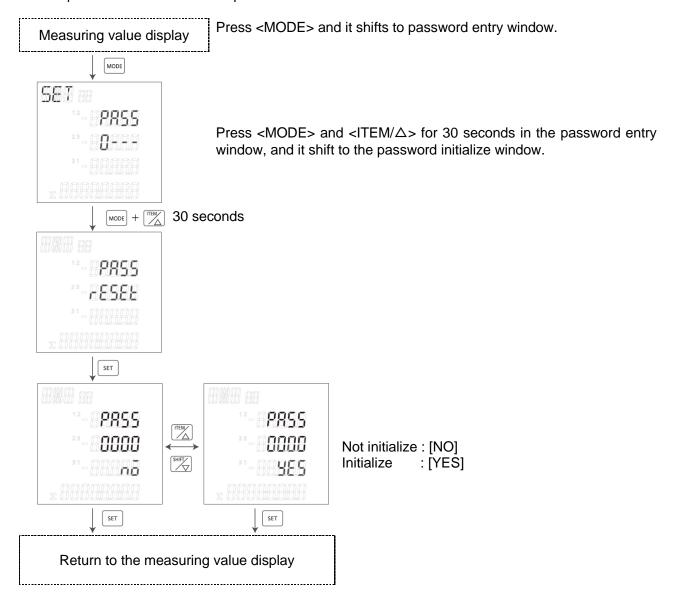
Enter password from left to right using $\langle ITEM/\Delta \rangle$, $\langle SHIFT/\nabla \rangle$.

Increase

Shift entered digit to the right

Press <SET> after enter the password.

If the password is correct, it shift to setting mode of power measurement.


If the password is wrong, [FAIL] is displayed and it returns to the password entry window.

*If you make wrong password 5 times, you can't set 1-hour after.

4.3 Password initialize

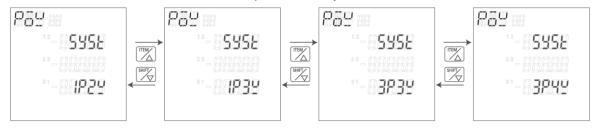
When you forget the password, initialize it in the following procedures. (Initial: [0000]) It is impossible to decode the set password.

4.4 How to Set

■Set before measuring.

Select setting item with $\langle ITEM/\Delta \rangle$ and press $\langle SET \rangle$, and the value will be blinking.

Set with $\langle ITEM/\Delta \rangle$ and $\langle SHIFT/\nabla \rangle$.

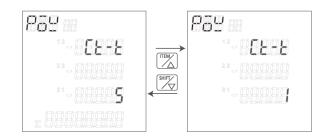

When you select [YES] with the confirmation window and press <SET>, the setting values are settled.

4.4.1 Settings for power measurement

Phase/Wire system

Select phase/wire system to measure.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select phase/wire system.



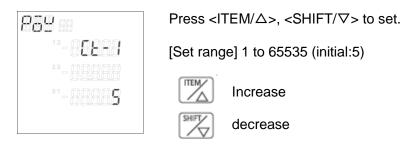
[Set list] 1P2W, 1P3W, 3P3W, 3P4W (initial: 1P2W)

* When the system is not matched with the measure system, it doesn't measure correctly.

CT type

Select using CT type (secondary side current).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select CT type.


[Set list] 5 (5A), 1 (1A) (initial: 5)

To use CT with secondary side current 5A; [5] To use CT with secondary side current 1A: [1]

Primary side current of CT

Set the primary side current of using CT.

Enter the primary side current of CT that is set at CT type setting.

Primary side current of using CT is 400A: [400]

VT ratio

Select the voltage input method, input voltage directly or uses a voltage transformer (VT: secondary side rating 110V) and set VT ratio.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set. [Set range] 1.00 to 600.00 (initial:1.00)

increase

decrease

Input directly without VT: [1.00]

Use VT : [1.01 to 600.00]

*When input voltage is under 3V (VT ratio = 1), [0.0] is displayed and it doesn't measure.

Conversion rate (P)

Set the conversion rate per integral active power 1 kWh.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[set range] 0.00 to 99.99/1kWh (initial:10.00)

increase

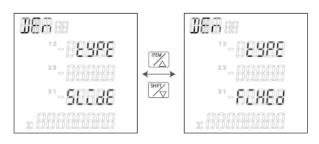
decrease

Conversion rate (-P)

Set the conversion rate per integral export power (-P) 1kWh.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[set range] 0.00 to 99.99/1kWh (initial:10.00)


increase

4.4.2 Settings for demand measurement

Power demand type

Select type of power demand measurement.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select power demand type.

[Set list] Slide (sliding block), Fixed (fixed block)

(initial: Slide)

Power demand interval 1

Set interval time to use for sliding block and fixed block for power demand measurement.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 1 to 60 min. (initial: 15)

Increase

Decrease

Power demand interval 2

* It is only when [Slide] is selected for power demand type.

Set slide time to use for sliding block for power demand measurement.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 1 to 60 min. (initial: 1)

Increase

decrease

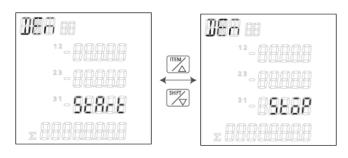
Current demand interval

Set interval to use for current demand calculation.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 1 to 60 min. (initial: 15)

Increase



Decrease

Demand measurement status

Set the timing to start demand measurement.

When you select [Start] with this window and set [YES] with confirmation mode, it start demand measuring.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select Demand measurement status.

[Set list] Start, Stop (initial: Stop)

4.4.3 Settings for communication

Protocol

Select protocol for of main unit via serial communication (RS485).

*When protocol is changed, device number, transmission speed (baud rate), transmission format, stop bit and response time will be initialized.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

[Set list] MEWT(MEWTOCOL), MODr (MODBUS(RTU)), 645(DL/T645-2007) (initial: MEWT)

Device number

Set an individual device number for each unit when two or more units are connected to communicate via serial communication (RS485).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set. The setting range differs according to the protocol.

[Set range] MEWTOCOL: 1 to 99

MODBUS(RTU): 1 to 247

DL/T645-2007: 0 to 9999 (initial:1)

increase

decrease

Transmission speed (Baud rate)

Select the serial communication (RS485) transmission speed. Define the transmission speed according to the master's (PLC etc.).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

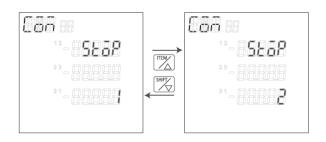
[Set list] 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 [bps] (initial: 19200)

Transmission format

*Select [8b-E] when [645] is set for the protocol.

Select serial communication (RS485) transmission format (Data length, Parity). Define the transmission format according to the master's (PLC etc.).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.



[Set list] 8b-o (8bit odd), 8b-n (8bit none), 8b-E (8bit even) (initial: 8b-o)

Stop bit

Select serial communication (RS485) stop bit.

*Select [1] when [645] is set for the protocol.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

[Set list] 1, 2 (initial: 1)

Response time

*Select 50 or more when [645] is set for the protocol.

Set serial communication (RS485) response time of main unit.

When command is received, it sends response after setting response time passes.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 1 to 99 ms (initial: 5)

increase

4.4.4 Settings for optional functions

Auto-off

Display LCD turns off automatically when there is no key operation for a long time. After it passes the setting time, backlight will turn off.

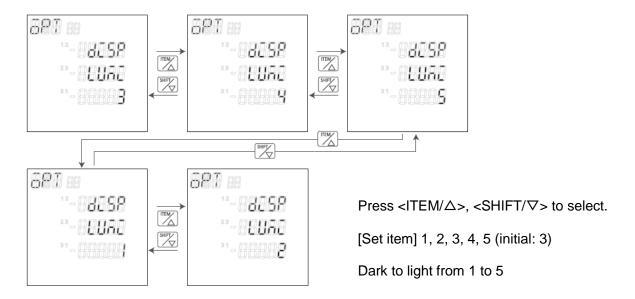
Set $\langle ITEM/\Delta \rangle$, $\langle SHIFT/\nabla \rangle$ to set.

[Set range] 0 to 99 min. (initial:1)

increase

decrease

Always turn on


: [0]

Turn off after setting time: [1~99]

After turns off the LCD, any key operation makes it turns on.

Luminance

Adjust the display luminance.

Update cycle

Set update cycle for measuring window.

It updates the display of measured values every setting time.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 100 to 1000ms (initial:100)

Increase

Auto-display

It shifts items of each integral value automatically.

When it passes the setting time after key operation, the integral value is shifted automatically.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 0 to 99 min. (initial:10)

increase

decrease

Not change automatically

: [0] Chang automatically after the setting time: [1 to 99]

*Any key operation during auto-display makes the display shift to instantaneous active power.

Display cycle

*It skips this item when [0] is set for auto-display.

Set each display cycle during auto-display.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] 1 to 99 sec (initial:5)

increase

decrease

Shift every 1second: [1]

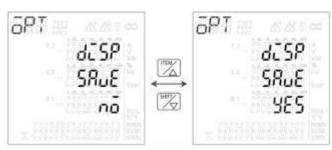
Temperature correction

The measured temperature can be corrected to display.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to set.

[Set range] -100.0 to 100.0 (initial: 0.0)

increase

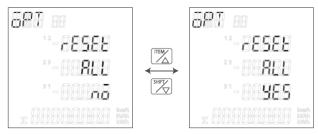


^{*}Any key operation during auto-display makes the display shift to instantaneous active power.

Save display

It displays value of an item displayed immediately before when power on and when it shifts the display mode.

*When changing any of the settings in section 4.4, the instantaneous active power in monitoring mode is displayed.


Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

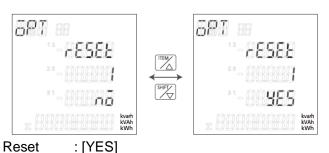
[Set list] YES, NO (initial: NO)

Save item : [YES] Not save : [NO]

Reset all integral value

Integral power (active, reactive, apparent) and logging data can be reset at one time.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.


[Set list] YES, NO (initial: NO)

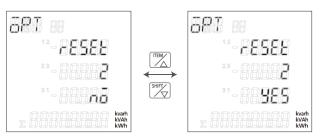
Reset all : [YES] Not reset : [NO]

Reset integral value 1

*It skips this item when [YES] is selected for reset all integral value.

Reset the integral power of 1CH/1-phase (active, reactive, apparent) and integral export power of 1CH/1-phase (active, reactive).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.


[Set list] YES, NO (initial: NO)

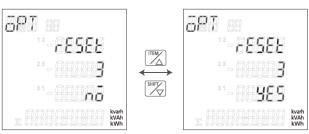
Not reset : [NO]

Reset integral value 2

*It skips this item when [YES] is selected for reset all integral value.

Reset the integral power of 2CH/2-phase (active, reactive, apparent) and integral export power of 2CH/2-phase (active, reactive).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.


[Set list] YES, NO (initial: NO)

Reset : [YES] Not reset : [NO]

Reset integral value 3

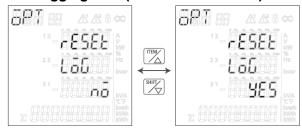
*It skips this item when [YES] is selected for reset all integral value.

Reset the integral power of 3CH/3-phase (active, reactive, apparent) and integral export power of 3CH/3-phase (active, reactive).

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

[Set list] YES, NO (initial: NO)

Reset : [YES] Not reset : [NO]

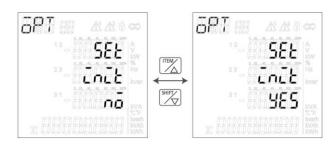

Reset logging data

Reset

Not reset : [NO]

*It skips this item when [YES] is selected for reset all integral value.

Reset logging data (max. demand value).


Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

[Set list] YES, NO (initial: NO)

: [YES]

Initialize settings

You can initialize all setting parameters.

Press <ITEM/ \triangle >, <SHIFT/ ∇ > to select.

[Set list] YES, NO (initial: NO)

Initialize settings : [YES] Not initialize : [NO]

Version
You can check the software version.

It displays the software version.

4.4.5 Password setting

Password setting

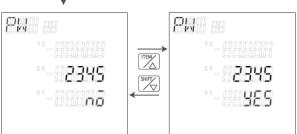
You can set password for changing the settings.

It is necessary to enter the password before moving the setting mode.

We recommend you to set password to avoid unexpected change.

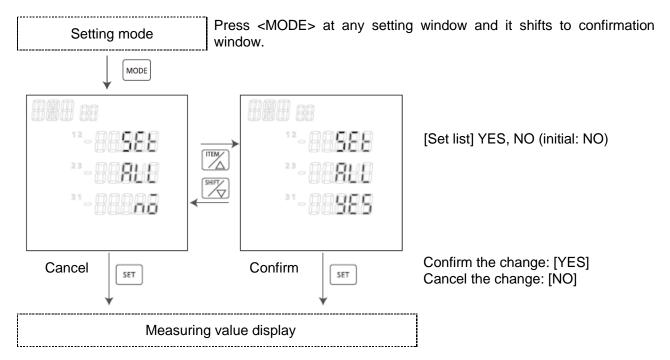
Press <SET> and [0] on the left is blinking. Set password using <ITEM/ \triangle >, <SHIFT/ ∇ >.

Increase


Shift entered digit to the right

Set from left to right. Make the digit to set blink.

[Set range] 0000 to 9999 (initial: 0000)


Set 4-digit password and press <SET> After that the confirm window is displayed.

[Set range] YES, NO (initial: NO)

Confirm: [YES] Not confirm: [NO]

4.4.6 Confirmation window

Chapter 5 Various Functions

5.1 Demand function

You can select demand calculation methods for KW9M Eco-POWER METER from the below.

- According to IEC61557-12
 - 1. Sliding block interval demand
 - 2. Fixed block interval demand
 - 3. Current demand

Please use this simple demand function as your standard. The value is not guaranteed.

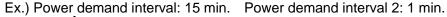
Caution

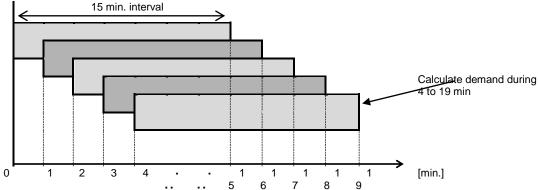
(1)Definition of Demand

It is demand measurement in order to use by yourself as your standard.

5.1.1 Block interval demand

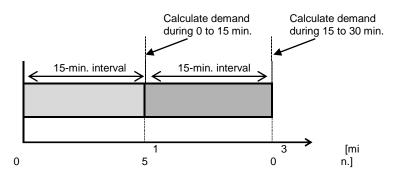
It calculates demand by setting interval and displays.


You can select sliding block or fixed block for interval.


It output demand alarm according to the setting conditions.

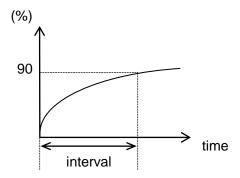
Sliding block

Set power interval by 1 to 60(min.) (every 1-min.). It calculates demand during latest finished interval and displays.


One interval is started every time that set for 'power demand interval 2'.

Fixed block

Set power interval by 1 to 60 (min.) (every 1-min.) It calculates demand during latest finished interval and displays. After one interval finishes, the next interval starts.


5.1.2 Current Demand

Current demand calculates the demand based on a thermal demand meter.

Current demand =

(Average of current – last current demand value) × 90%(fixed) + Last current demand value

In case of that a stable current flows for interval time, 90% of current value is displayed.

5.1.3 Max. demand value

Maximum value of measured demand value (active, reactive, apparent, active (export), reactive (export), current)) are considered to the max. demand value.

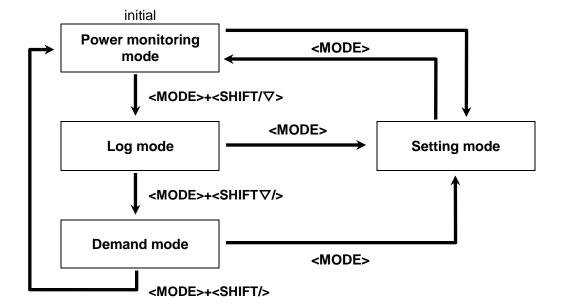
It records the max. demand value of each.

5.1.4 Working at power failure and at recovery

<At power failure>

- It stops the demand measurement.
- It records max. demand value in the internal memory.

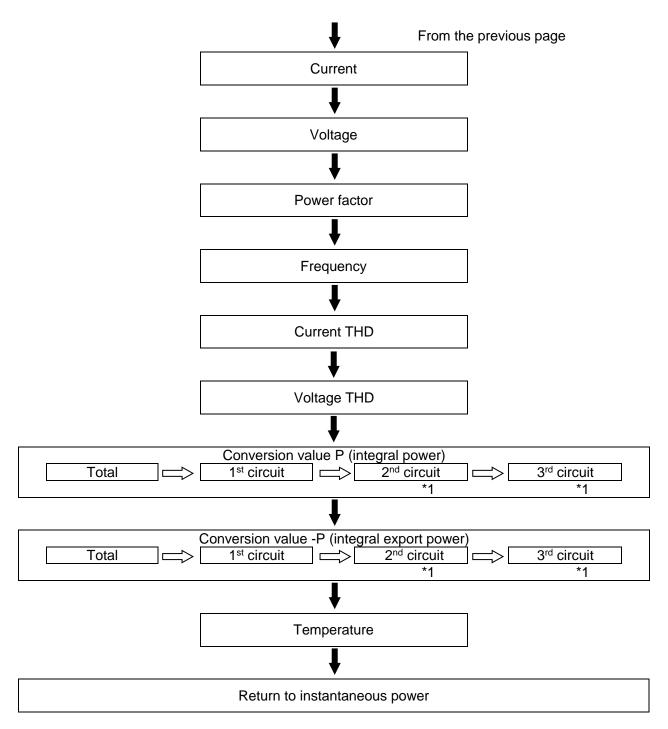
<At recovery>

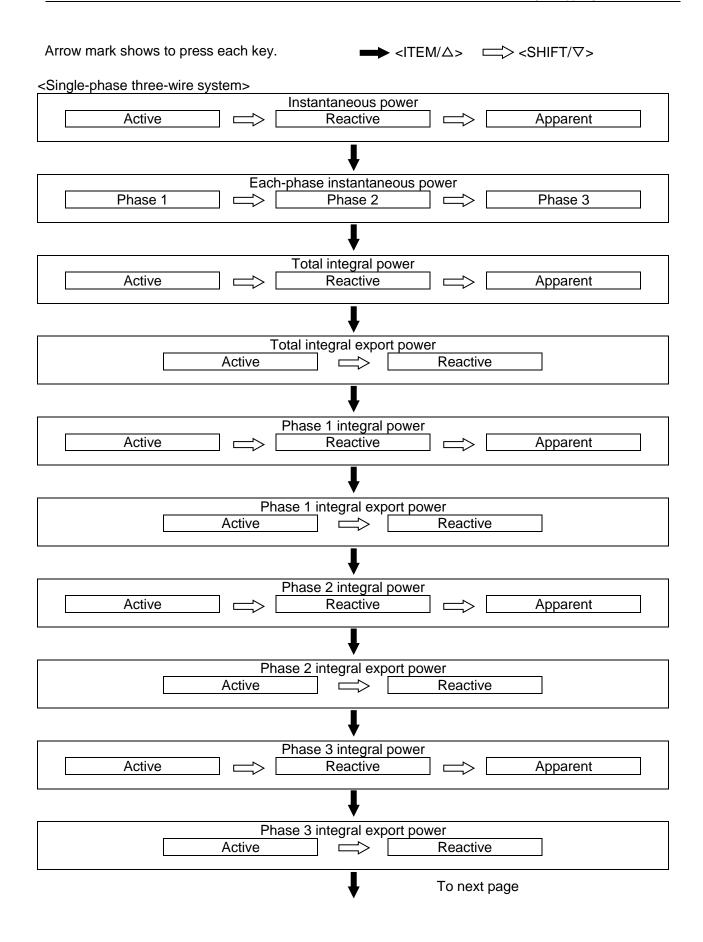

•It will start demand measuring with new span.

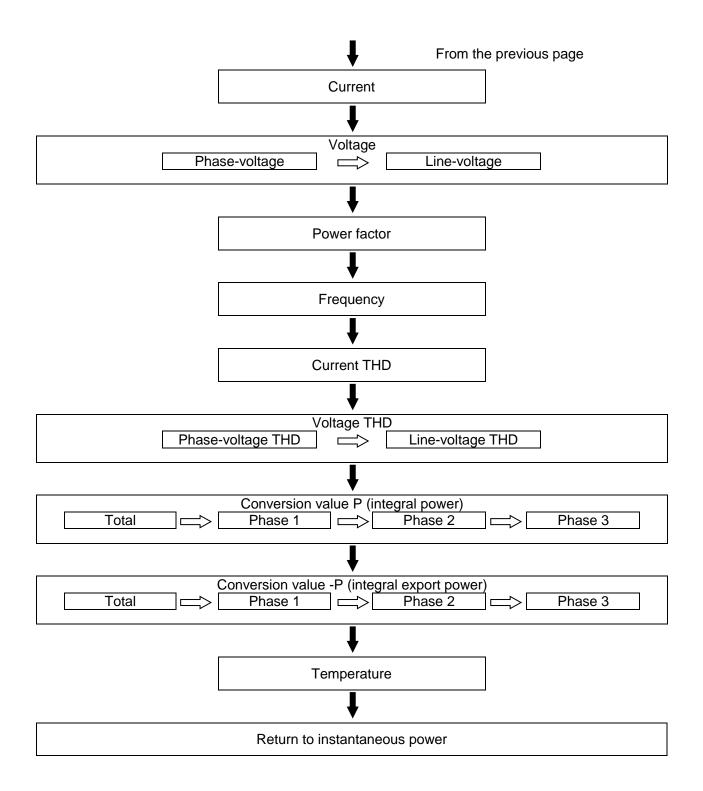
Chapter 6 Display of each Value 6.1 Working of Monitor display

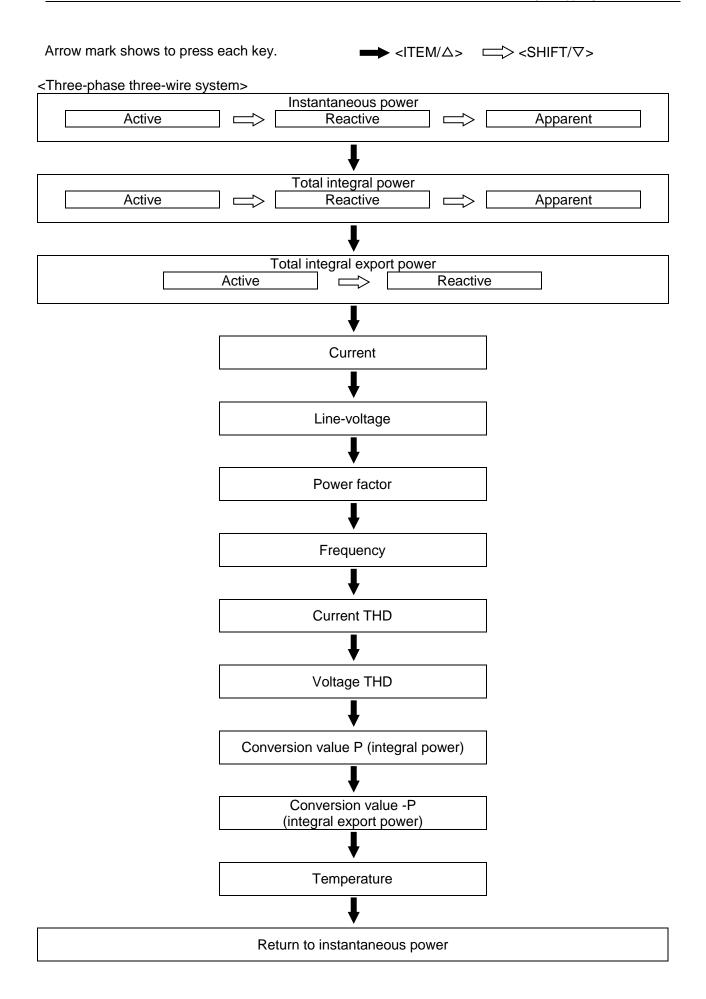
[Shift the display mode]

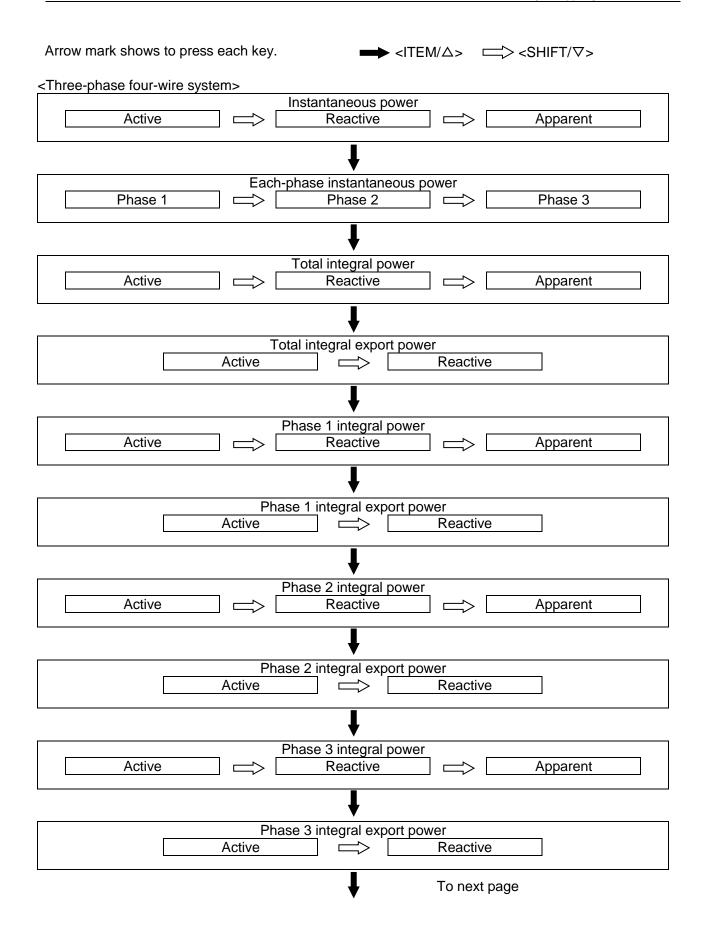
Press <SHIFT/∇> during pressing <MODE>, it shifts measuring mode, logging mode and demand mode.

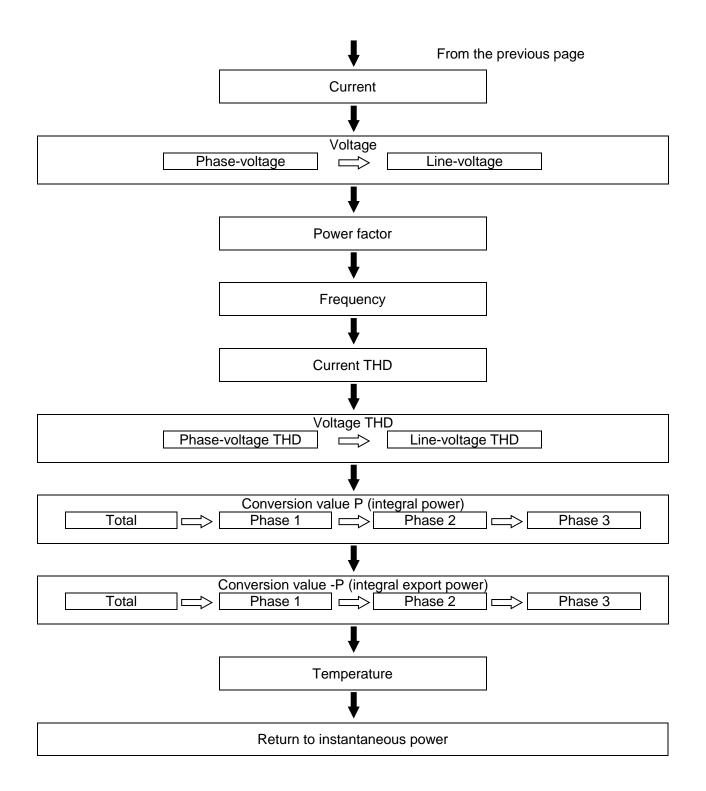

Press <MODE> to shift the setting mode.

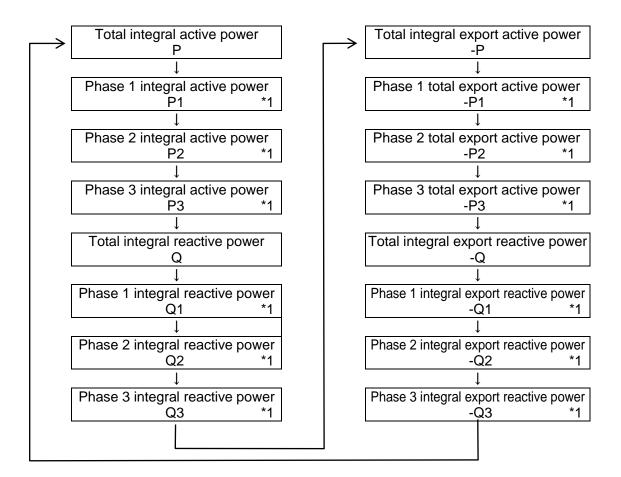

6.2 Working of Monitor Display


Arrow mark shows to press each key. → <ITEM/△>

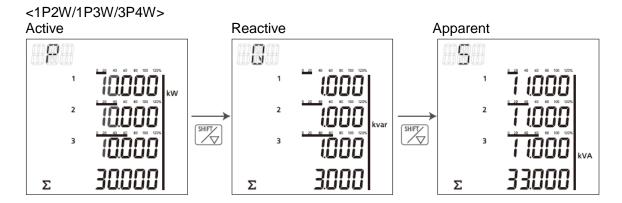

⇒ SHIFT/▽> <Single-phase two-wire system> Instantaneous power Active Reactive Apparent Each-circuit instantaneous power 2nd circuit 3rd circuit 1st circuit Total integral power Active Reactive Apparent Total integral export power Active Reactive 1st circuit integral power Active Reactive Apparent 1st circuit integral export power Active Reactive 2nd circuit integral power Active Reactive Apparent 2nd circuit integral export power Active Reactive 3rd circuit integral power Active Reactive Apparent 3rd circuit integral export power Active Reactive To next page



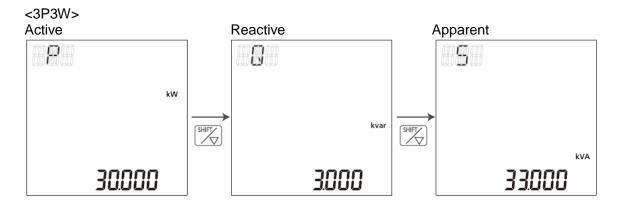

^{*1)} When 2nd circuit and 3rd circuit are not measured, [0] are displayed.



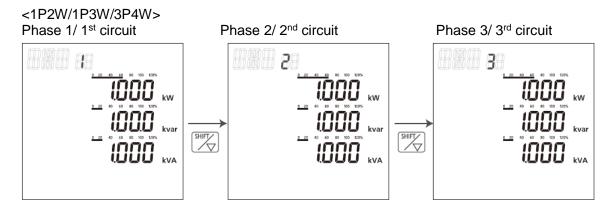
● Items that are displayed during the auto-display mode


When some value is set at auto-display setting, each integral value display is shifted automatically. If you press any key during auto-display mode, it returns the instantaneous power display. Items, which are not displayed according to the phase/wire system, are skipped

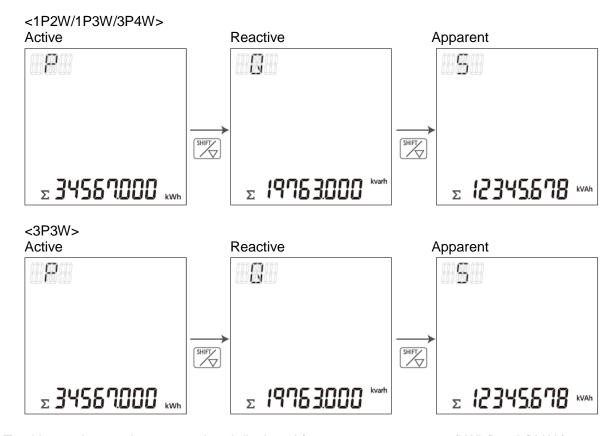
^{*1} Those are skipped when it set to three-phase three-wire system.


6.2.1 <u>Instantaneous power</u>

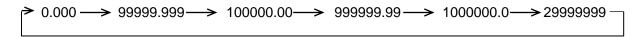
- •The present instantaneous power of all phases or all circuits is displayed.
- •Press <SHIFT/ ∇ > to change active, reactive and apparent.


• Eco-POWER METER displays the power as below.

Display	1P2W	1P3W	3P4W
1	1 st circuit	R-phase	R-phase
2	2 nd circuit		S-phase
3	3 rd circuit	T-phase	T-phase

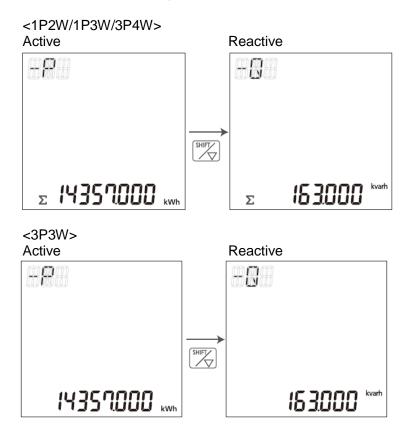

6.2.2 Instantaneous power of each phase / each circuit

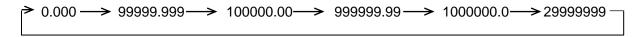
- •The present instantaneous power of each phase or each circuit is displayed. (It doesn't display for 3P3W system.)
- •Press <SHIFT/∇> to change phase 1 (1st circuit), phase 2 (2nd circuit) and phase 3 (3rd circuit).



6.2.3 Total integral power

- •The present total integral power is displayed.
- •Press <SHIFT/ ∇ > to change active, reactive and apparent.

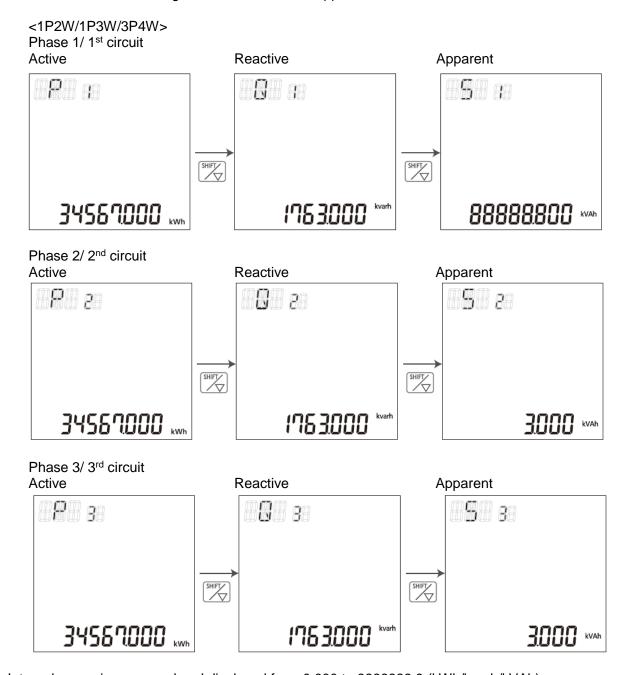

- •Total integral power is measured and displayed from 0.000 to 29999999 (kWh/kvarh/kVAh).
- •The decimal point is changed automatically.


(After reach the full scale, 29999999, the value reverts to 0.000 but continues to measure.) *At this window, present total integral power is displayed even if integral powers of each phase/ each circuit return to '0' after measuring to full-scale or reset. Therefore the total value of displayed integral power of each phase/each circuit is different from the value at this window.

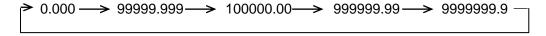
6.2.4 Total integral export power

- •The present total export power is displayed.
- •Press <SHIFT/ ∇ > to change active, reactive and apparent.

- •Total integral power is measured and displayed from 0.000 to 29999999 (kWh/kvarh/kVAh).
- •the decimal point is changed automatically.

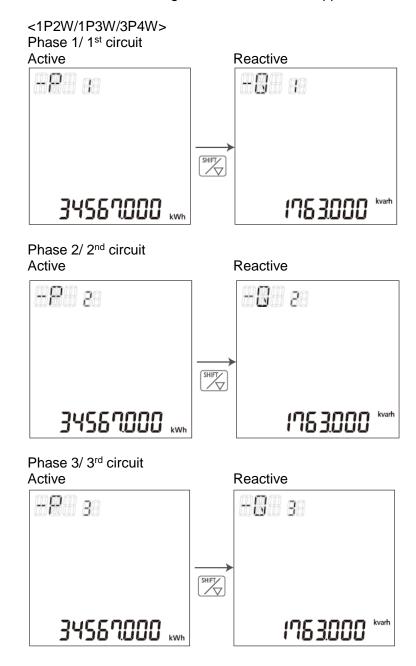


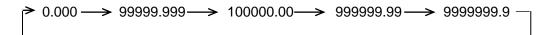
(After reach the full scale, 29999999, the value reverts to 0.000 but continues to measure.)


^{*}At this window, present total export power is displayed even if integral powers of each phase/ each circuit return to '0' after measuring to full-scale or reset. Therefore the total value of displayed integral power of each phase/each circuit is different from the value at this window.

6.2.5 Integral power of each phase / each circuit

- •The present integral power of each phase or each circuit is displayed. (It doesn't display for 3P3W system.)
- •Press <SHIFT/ ∇ > to change active, reactive and apparent.


- Integral power is measured and displayed from 0.000 to 9999999.9 (kWh/kvarh/kVAh).
- •The decimal points is changed automatically.


(After reach the full scale, 9999999.9, the value reverts to 0.000 but continues to measure.)

6.2.6 Integral export power of each phase / each circuit

- •The present integral export power of each phase or each circuit is displayed. (It doesn't display for 3P3W system.)
- •Press <SHIFT/ ∇ > to change active, reactive and apparent.

- Integral power is measured and displayed from 0.000 to 9999999.9 (kWh/kvarh).
- •The decimal points is changed automatically.

(After reach the full scale, 9999999.9, the value reverts to 0.000 but continues to measure.)

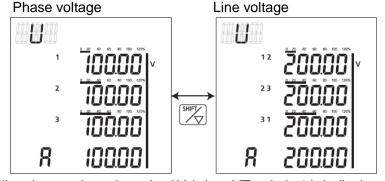
How to reset integral power (active/reactive/apparent) and integral export power (active/reactive)

•You can reset the value at the optional functions settings. Refer to 4.4.3 setting for optional functions in detail.

6.2.7 Current

•The present current value is displayed.

- It measures from 0.1% of CT secondary current.
- •When input current exceeds 200% or the display range, it displays "- - - ". Check and confirm the measurement environment.
- Current measuring points


Eco-POWER METER measures the current as below.

Display	1P2W	1P3W	3P3W 3P4W
1	1 st circuit R-current	R-current	R-current
2	2 nd circuit R-current	N-current	S-current
3	3 rd circuit R-current	T-current	T-current

6.2.8 Voltage

- •The present voltage is displayed.
- •Press <SHIFT/ ∇ > to change phase voltage and line voltage.

(Line voltage is not displayed for 1P2W system. Phase voltage is not displayed for 3P3W system.

- •When input voltage is under 3V (when VT ratio is 1.), it displays "0.0" and doesn't measure.
- •When input voltage exceeds 600V or the display range, it displays "- - - ". Check and confirm the measurement environment.
- Voltage measuring points

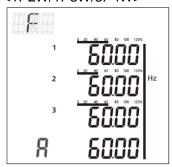
Eco-POWER METER measures the voltage as below.

Display	1P2W	1P3W	3P3W	3P4W
1	R-voltage (L1-N) or 1st circuit R-voltage	R-voltage (L1-N)		R-voltage (L1-N)
2	None or 2 nd circuit R-voltage	None	No display	S-voltage (L2-N)
3	None or 3 rd circuit R-voltage	T-voltage (L3-N)		T-voltage (L3-N)
12		R-voltage (L1-N)	RS-voltage (L1-L2)	RS-voltage (L1-L2)
23	No display	T-voltage (L3-N)	ST-voltage (L2-L3)	ST-voltage (L2-L3)
3 1		TR-voltage (L3-L1)	TR-voltage (L3-L1)	TR-voltage (L3-L1)

6.2.9 Power factor

•The present power factor of the load is displayed.

<1P2W/1P3W/3P4W>



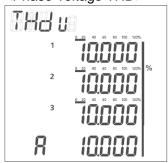
^{*}Power factor operation is a method assuming balanced load. The error might be big when it measures unbalanced load.

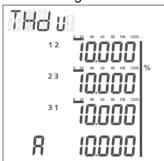

6.2.10 Frequency

•The present frequency is displayed.

<1P2W/1P3W/3P4W>

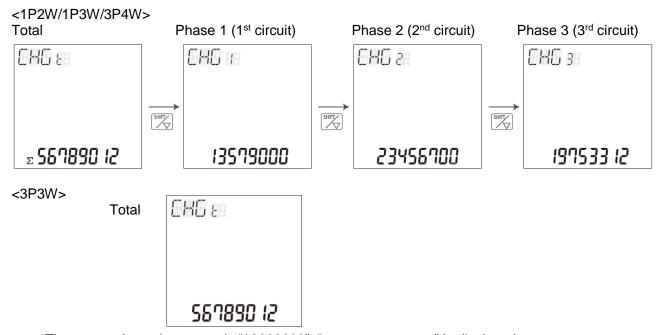
6.2.11 Current THD


•The present THD for current is displayed.


6.2.12 Voltage THD

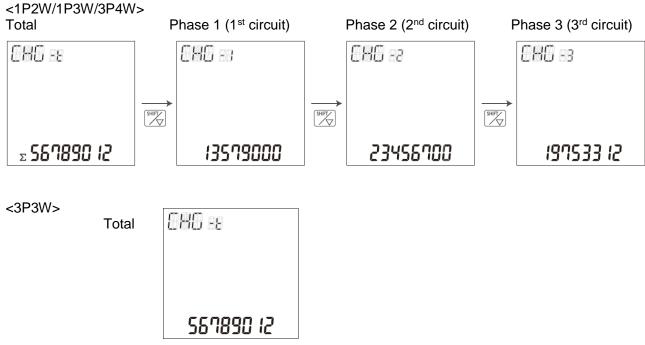
The present THD for voltage displayed.

<Phase-voltage THD>



<Line-voltage THD>

6.2.13 Conversion value for integral active power


- •The conversion value for the present integral active power (P) is displayed. (Only total conversion value is displayed for 3P3W system.)
- Press <SHIFT/∇> to change total, phase 1 (1st circuit), phase 2 (2nd circuit) and phase 3 (3rd circuit).

^{*}The conversion value exceeds "99999999", "——————" is displayed. Check and confirm the measurement environment.

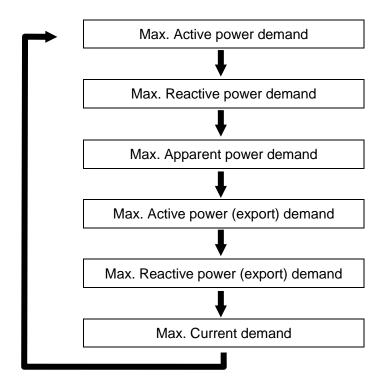
6.2.14 Conversion value for integral export power

- •The conversion value for the present integral export active power (-P) is displayed. (Only total conversion value is displayed for 3P3W.)
- •Press <SHIFT/∇> to change total, phase 1 (1st circuit), phase 2 (2nd circuit) and phase 3 (3rd circuit).

^{*}The conversion value exceeds "99999999", "——————" is displayed. Check and confirm the measurement environment.

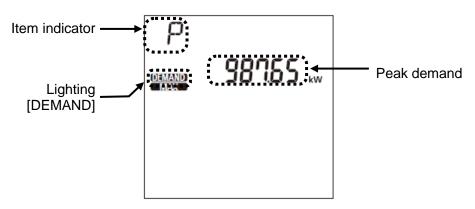
6.2.15 Temperature

•The present temperature is displayed.



- •Temperature measuring function is the simple function Use this only to check temperature trend and do not use for control.
- •It measures by built-in thermistor, therefore it differs the measuring value according to the internal circuit conditions (communication, input current). Use it for your reference.
- •When the temperature of the front is much different from the temperature of installed panel, when it cools inside the panel, it is impossible to measure correctly. Use the temperature correction function in order to adjust the temperature and use only to check temperature trend.

6.3 Working of Logging Mode

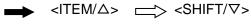

Each measured value is displayed as below. It differs according to the selected phase/wire system. Arrow mark shows to press each key.

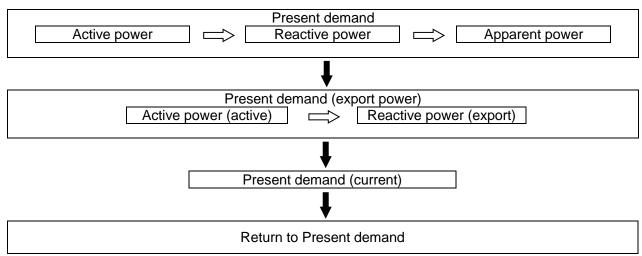
<ITEM/Δ>

6.3.1 Max. demand value

Log data of peak demand is displayed.

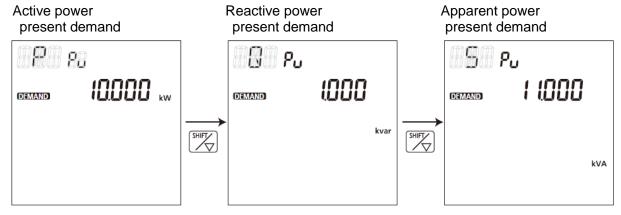
• Press < ITEM/ \triangle > to change items to display.


Item	Display		
item	Indicator	unit	
Active power Peak demand	Р	kW	
Reactive power Peak demand	Q	kvar	
Apparent power Peak demand	S	kVA	
Active power (export) Peak demand	-P	kW	
Reactive power (export) Peak demand	Q	kvar	
Current Peak demand		Α	

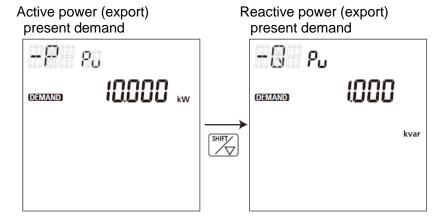

6.4 Working of Demand Mode

Each measured value is displayed as below. It differs according to the selected demand type.

6.4.1 Block Interval Demand (Sliding block, fixed block)

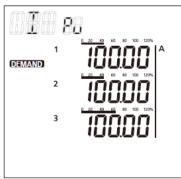

Arrow mark shows to press each key.

Present power demand


- •Each demand value is displayed.
- •Press <SHIFT/ ∇ > to change active power, reactive power, apparent power.

- * [-----] is displayed during the following cases.
 - Until passing the setting time to start monitoring demand
 - Demand value exceeds the display range
 - •Demand measurement status is set to 'Stop'.

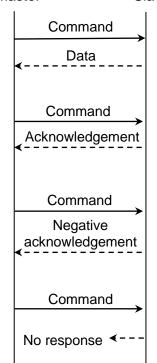
Present export power demand


- Each demand value is displayed.
- •Press <SHIFT/ ∇ > to change active power (export), reactive power (export).

- * [-----] is displayed during the following cases.
 - Until passing the setting time to start monitoring demand
 - •Demand value exceeds the display range
 - •Demand measurement status is set to 'Stop'.

Present current demand

• Present value of current demand is displayed.


- * [-----] is displayed during the following cases.
 - Until passing the setting time to start monitoring demand
 - Demand value exceeds the display range
 - •Demand measurement status is set to 'Stop'.

Chapter 7 Communications

7.1 Communication Procedures

Communication starts with command transmission from the host computer (hereafter Master) and ends with the response of Eco-POWER METER (hereafter Slave).

Master Slave

- Response with data
 - When master sends reading command, slave responds with the corresponding set value or current status.
- Acknowledgement

When master sends setting command, slave responds by sending the acknowledgement.

Negative acknowledgement

When master sends a non-existent command or value out of the setting range, the slave returns negative acknowledgement.

No response

Slave will not respond to master in the following cases.

- Global address "FF" (MEWTOCOL) is set.
- Broadcast address "00H" (Modbus protocol) is set.
- Communication error (framing error, parity error)
- CRC-16 discrepancy (Modbus RTU mode)
- CS discrepancy (DL/T645)

7.2 Communication timing

- ◆The minimum access time from the master is 1 sec. (Minimum time for update the data) Eco-POWER METER may not response due to noise and so on, be sure to check that it receives the response from Eco-POWER METER.
- ◆In order to improve the communication quality, we recommend to send the transmission again.

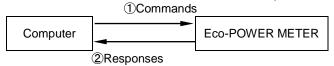
Communication timing of RS485

♦ Eco-POWER METER (Slave) side

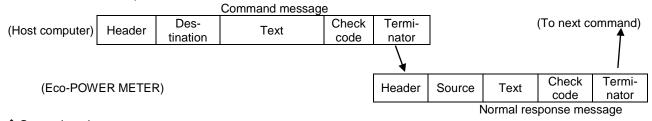
When Eco-POWER METER (Slave) starts transmission to RS485 communication line, it is arranged so as to provide an idle status transmission period of about 1 to 99ms (setting available) before sending the response to ensure the synchronization on the receiving side. After sending the response, master can disconnect the transmitter from the communication line within transmission period 20ms.

♦ Master side (Cautions of setting a program)

At communication, keep the following conditions.


- 1) Set the program so that the master can disconnect the transmitter from the communication line within the transmission period of about 20ms after sending the command in preparation for reception of the response from Eco-POWER METER (Slave).
- 2) To avoid collision of transmissions between the master and Eco-POWER METER (Slave), send a next command after checking that the master received the response.

7.3 MEWTOCOL Communication


7.3.1 Overview of MEWTOCOL-COM (RS485)

◆Command and response functions

The computer sends commands (instructions) to Eco-POWER METER, and receives responses in return. This enables the computer and Eco-POWER METER to converse with each other, so that various kinds of information can be obtained and provided.

◆Command and response formats

♦ Control codes

Name	Character	ASCII code	Explanation
Header	%	25H	Indicates the beginning of a message.
Command	#	23H	Indicates that the data comprises a command message.
Normal response	\$	24H	Indicates that the data comprises a normal response message.
Error response	!	21H	Indicates that the data comprises a response message when an error occurs.
Terminator	CR	0DH	Indicates the end of a message.

[♦] Destination and source AD (H), (L)

Two-digit decimal 01 to 99 (ASCII codes)

Command messages contain a station number for Eco-POWER METER that receives the message.

When FF (ASCII code table) is used, however, the transmission is a global transmission (sent to all stations at once).

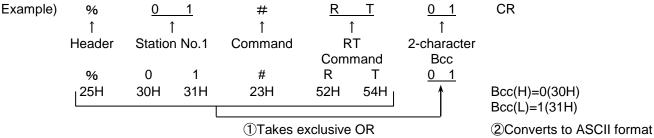
Note) When a global transmission is sent, no response to the command message is returned.

♦Block check code Bcc (H), (L)

Two- digit hexadecimal 00 to FF (ASCII codes)

These are codes (horizontal parity) that are used to detect errors in the transmitted data.

If "**" is entered instead of "Bcc", however, messages can be transmitted without the Bcc. In this case, the Bcc is included with the response


♦ Error code Err (H), (L)

Two- digit hexadecimal 00 to FF (ASCII codes)

These indicate the content if an error occurs.

◆Bcc (Block Check Code)

- -The Bcc is a code that carries out an error check using horizontal parity, to improve the reliability of the data being sent.
- -The Bcc uses an exclusive OR from the header (%) to the final character of the text, and converts the 8- bit data into a 2-character ASCII code.

7.3.2 Data Register List

Setting

Data register	Name	Unit	Kind of data	Range	R/W
DT00050	RS485 Device number	-	Unsigned 16bit	Mewtocol: 1 to 99 Modbus: 1 to 247 DL/T645: 0 to 9999	R/W
DT00051	RS485 Transmission speed	1	Unsigned 16bit	0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600 7: 115200	R/W
DT00052	RS485 Transmission format	_	Unsigned 16bit	0: 8bit-o 1: 8bit-n 2: 8bit-E	R/W
DT00053	RS485 Stop bit	ı	Unsigned 16bit	1, 2	R/W
DT00054	RS485 Response time	1ms	Unsigned 16bit	1 to 99	R/W
DT00055	Phase/Wire	_	Unsigned 16bit	0: 1P2W 1: 1P3W 2: 3P3W 3: 3P4W	R/W
DT00056	CT type (2 nd)	Rated A (rms)	Unsigned 16bit	1, 5	R/W
DT00057	Primary side current of CT	1A	Unsigned 16bit	1 to 65535	R/W
DT00058	VT ratio	0.01	Unsigned 16bit	100 to 60000	R/W
DT00059	Temperature correction value	0.1°C	Signed 16bit	-100.0 to 100.0	R/W
DT00065	Update cycle	100ms	Unsigned 16bit	1 to 10	R/W
DT00070	Auto-off	1min	Unsigned 16bit	0 to 99 (0: always ON)	R/W
DT00087	Conversion rate (-P)	0.01	Unsigned 16bit	0 to 9999	R/W
DT00093	Conversion rate (P)	0.01	Unsigned 16bit	0 to 9999	R/W
DT00094	Password	_	Unsigned 16bit	0 to 9999	R/W
DT00095	Auto display start	1min	Unsigned 16bit	0 to 99 (0: fix display item)	R/W
DT00096	Display cycle	1sec	Unsigned 16bit	1 to 99	R/W
DT00097	Luminance	_	Unsigned 16bit	1 to 5 (dark to light)	R/W
DT00098	Protocol	-	Unsigned 16bit	0: MEWTOCOL 1: MODBUS 2: DL/T645	R/W
DT30108	Power demand type	-	Unsigned 16bit	1:sliding block, 2:fixed block	R/W
DT30109	Power demand interval1	1min,	Unsigned 16bit	1 to 60	R/W
DT30110	Power demand interval2	1min,	Unsigned 16bit	1 to 60	R/W
DT30111	Current demand interval	1min,	Unsigned 16bit	1 to 60	R/W
DT30200	Demand measurement status	_	Unsigned 16bit	0: Stop, 1: Start	R/W
DT30300	Reset all integral value	-	Unsigned 16bit	0:No 1:Yes	R/W
DT30301	Reset integral value 1	1	Unsigned 16bit	0:No 1:Yes	R/W
DT30302	Reset integral value 2	ı	Unsigned 16bit	0:No 1:Yes	R/W
DT30303	Reset integral value 3	_	Unsigned 16bit	0:No 1:Yes	R/W
DT30306	Reset logging data	-	Unsigned 16bit	0:No 1:Yes	R/W
DT30307	Cut off current	0.1%	Unsigned 16bit	1 to 500	R/W
DT30309	Save display	_	Unsigned 16bit	0:No 1:Yes	R/W
DT30310	Initialize settings		Unsigned 16bit	0:No 1:Yes	R/W

Measurement value

◆Data registers for 3P3W

- •Instantaneous power (active/reactive/apparent) is saved in data register of 'Total instantaneous power (active/reactive/apparent)'.
- Integral power (active/reactive/apparent) is saves in data registers of 'Total integral power (active/reactive/apparent)'.
- Frequency is saved in data register of 'Frequency average'.
- •Power factor is saved in data register of 'PF average'.

. owo. lactor	io oavoa iii aala rogioloi	0	.go.		
Data register	Name	Unit	Kind of data	Range	R/W
DT00100	Integral active newer (1)	0.04141/16	Unaigned 20bit	0 to 00000000	D AA/
DT00101	Integral active power (1)	0.01kWh	Unsigned 32bit	0 to 999999999	R/W
DT00102	Integral active newer (2)	0.04141/h	Unaigned 20bit	0 to 00000000	R/W
DT00103	Integral active power (2)	0.01kWh	Unsigned 32bit	0 to 999999999	IT/VV
DT00104	Integral active power (3)	0.01kWh	Unsigned 32bit	0 to 999999999	R/W
DT00105	integral active power (3)	U.UTKVVII	Unsigned 32bit	0 10 99999999	IT/VV
DT00106	Total integral active	0.01kWh	Unsigned 32bit	0 to 2999999997	R
DT00107	power	O.OTKVVII	Unsigned 32bit	0 10 2999999991	IX
DT00108	Integral	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00109	reactive power (1)	0.0 TKVaIII	Onsigned Szbit	0.10.00000000	17,44
DT00110	Integral	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00111	reactive power (2)	0.0 TRVaIII	Chaighad OZDIC	0.10.00000000	10,00
DT00112	Integral	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00113	reactive power (3)	o.o.n.vaiii	Chaighted 625K	0.10.00000000	
DT00114	Total integral	0.01kvarh	Unsigned 32bit	0 to 2999999997	R
DT00115	reactive power		- chargina a com		
DT00116	Integral	0.01kVAh	Unsigned 32bit	0 to 999999999	R/W
DT00117	apparent power (1)		- chargina a com		
DT00118	Integral	0.01kVAh	Unsigned 32bit	0 to 999999999	R/W
DT00119	apparent power (2)		3		
DT00120	Integral	0.01kVAh	Unsigned 32bit	0 to 999999999	R/W
DT00121	apparent power (3)		<u> </u>		
DT00122	Total integral	0.01kVAh	Unsigned 32bit	0 to 2999999997	R
DT00123 DT00124	apparent power		-		
DT00124	Integral export active power (1)	0.01kWh	Unsigned 32bit	0 to 999999999	R/W
DT00125	Integral export active				
DT00120	power (2)	0.01kWh	Unsigned 32bit	0 to 999999999	R/W
DT00127	Integral export active				
DT00129	power (3)	0.01kWh	Unsigned 32bit	0 to 999999999	R/W
DT00120	Total integral				
DT00131	export active power	0.01kWh	Unsigned 32bit	0 to 2999999997	R
DT00132	Integral export				
DT00133	reactive power (1)	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00134	Integral export	0.041			D 444
DT00135	reactive power (2)	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00136	Integral export	0.041	Line i ann a al 00h it	0.4- 00000000	D 447
DT00137	reactive power (3)	0.01kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00138	Total integral export	0.0110.055	Unaigned 20kit	0 to 200000007	Ь
DT00139	reactive power	0.01kvarh	Unsigned 32bit	0 to 2999999997	R
DT00140	Instantaneous active	0.01kW	Signed 32bit	-9999999 to 9999999	R
DT00141	power (1)	U.UTKVV	Signed Szbit		Γ
DT00142	Instantaneous active	0.01kW	Signed 32bit	-99999999 to 99999999	R
DT00143	power (2)	U.UTKVV	Signed Szbit	-33333333 10 33333333	11
DT00144	Instantaneous active	0.01kW	Signed 32bit	-99999999 to 99999999	R
DT00145	power (3)	O.OTRVV	Oigiled 52bit	0000000 10 0000000	- ' \
DT00146	Total instantaneous	0.01kW	Signed 32bit	-29999997 to 29999997	R
DT00147	active power	0.01101	0.900 020.0		
DT00156	Instantaneous apparent	0.01kVA	Unsigned 32bit	0 to 99999999	R
DT00157	power (1)		- 3		-
DT00158	Instantaneous apparent	0.01kVA	Unsigned 32bit	0 to 99999999	R
DT00159	power (2)				
DT00160	Instantaneous apparent	0.01kVA	Unsigned 32bit	0 to 99999999	R
DT00161	power (3)		ı		

Data register	Name	Unit	Kind of data	Range	R/W
DT00162	Total instantaneous	0.0414\/A	Lineian ed 20hit		Ь
DT00163	apparent power	0.01kVA	Unsigned 32bit	0 to 299999997	R
DT00164	Voltage 1	0.1V	Unsigned 32bit	0 to 999999999	R
DT00165	voltage 1	0.17	Onsigned ozbit	0.10.00000000	1
DT00166	Voltage 2	0.1V	Unsigned 32bit	0 to 999999999	R
DT00167			9		
DT00168 DT00169	Voltage 3	0.1V	Unsigned 32bit	0 to 999999999	R
DT00169					
DT00170	Voltage average	0.1V	Unsigned 32bit	0 to 999999999	R
DT00172		0.41.4		0.4	
DT00173	Line voltage 1-2	0.1V	Unsigned 32bit	0 to 999999999	R
DT00174	Line voltage 2-3	0.1V	Unsigned 32bit	0 to 999999999	R
DT00175	Line voltage 2-3	0.17	Orisigned 32bit	0 10 999999999	IX.
DT00176	Line voltage 3-1	0.1V	Unsigned 32bit	0 to 999999999	R
DT00177	3	_	9		
DT00178 DT00179	Line voltage average	0.1V	Unsigned 32bit	0 to 999999999	R
DT00179					
DT00181	Current (1)	0.01A	Unsigned 32bit	0 to 999999999	R
DT00182	0	0.044	Lina di suna a di OObiit	0.4- 00000000	_
DT00183	Current (2)	0.01A	Unsigned 32bit	0 to 999999999	R
DT00184	Current (3)	0.01A	Unsigned 32bit	0 to 999999999	R
DT00185	Ourient (3)	0.017	Orisigned 32bit	0 10 333333333	11
DT00188	Current average	0.01A	Unsigned 32bit	0 to 999999999	R
DT00189	-			0 to 1000	
DT00190 DT00191	Frequency (1) Frequency (2)	0.1Hz 0.1Hz	Unsigned 16bit Unsigned 16bit	0 to 1000 0 to 1000	R R
DT00191	Frequency (3)	0.1Hz	Unsigned 16bit	0 to 1000	R
DT00193	Frequency average	0.1Hz	Unsigned 16bit	0 to 1000	R
DT00194	PF (1)	0.001	Signed 16bit	-1000 to 1000	R
DT00195	PF (2)	0.001	Signed 16bit	-1000 to 1000	R
DT00196	PF (3)	0.001	Signed 16bit	-1000 to 1000	R
DT00197	PF average	0.001	Signed 16bit	-1000 to 1000	R
DT00198	Integral active power (1)	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00199	, ,	kWh	9		-
DT00200 DT00201	Integral active power (2)	0.001 kWh	Unsigned 32bit	0 to 999999999	R/W
DT00201		0.001			
DT00203	Integral active power (3)	kWh	Unsigned 32bit	0 to 999999999	R/W
DT00204	Total integral active	0.001	Unaigned 20kit	0 to 200000007	Р
DT00205	power	kWh	Unsigned 32bit	0 to 2999999997	R
DT00206	Integral	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00207	reactive power (1)	kvarh	31101g1104 0251t	0.10.00000000	1.7,4,4
DT00208	Integral	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00209 DT00210	reactive power (2) Integral	kvarh 0.001			-
DT00210	reactive power (3)	kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00211	Total integral	0.001			_
DT00213	reactive power	kvarh	Unsigned 32bit	0 to 2999999997	R
DT00214	Integral	0.001	Uncioned 20hit	0 to 999999999	DAM
DT00215	apparent power (1)	kVAh	Unsigned 32bit	0 10 33333333	R/W
DT00216	Integral	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00217	apparent power (2)	kVAh	3		
DT00218	Integral	0.001 kVAh	Unsigned 32bit	0 to 999999999	R/W
DT00219 DT00220	apparent power (3) Total integral	0.001			
DT00220	apparent power	kVAh	Unsigned 32bit	0 to 2999999997	R
2100221	apparont power	11.77.111	1	l .	1

Data register	Name	Unit	Kind of data	Range	R/W
DT00222	Integral export active	0.001	Unaigned 22hit	0 to 00000000	DAM
DT00223	power (1)	kWh	Unsigned 32bit	0 to 999999999	R/W
DT00224	Integral export active	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00225	power (2)	kWh	Onsigned ozbit	0.10.00000000	10,77
DT00226	Integral export active	0.001	Unsigned 32bit	0 to 999999999	R/W
DT00227	power (3)	kWh	one-green contract		. ,
DT00228	Total integral	0.001	Unsigned 32bit	0 to 2999999997	R
DT00229 DT00230	export active power Integral export	kWh			
DT00230	reactive power (1)	0.001 kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00231	Integral export	0.001			
DT00233	reactive power (2)	kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00234	Integral export	0.001			
DT00235	reactive power (3)	kvarh	Unsigned 32bit	0 to 999999999	R/W
DT00236	Total integral export	0.001	Linaiana ad OObit	0.45.200000007	Б
DT00237	reactive power	kvarh	Unsigned 32bit	0 to 2999999997	R
DT00238	Instantaneous active	0.001	Signed 32bit	-99999999 to 99999999	R
DT00239	power (1)	kW	Oigrica 525it	0000000 10 0000000	- '\
DT00240	Instantaneous active	0.001	Signed 32bit	-99999999 to 99999999	R
DT00241	power (2)	kW	- 3		
DT00242 DT00243	Instantaneous active	0.001 kW	Signed 32bit	-9999999 to 99999999	R
DT00243	power (3) Total instantaneous	0.001	_		
DT00244 DT00245	active power	kW	Signed 32bit	-29999997 to 29999997	R
DT00245	Instantaneous reactive	0.001			
DT00247	power (1)	kvar	Signed 32bit	-99999999 to 99999999	R
DT00248	Instantaneous reactive	0.001	O: I 00l- it	00000000 1- 00000000	_
DT00249	power (2)	kvar	Signed 32bit	-9999999 to 99999999	R
DT00250	Instantaneous reactive	0.001	Signed 32bit	-99999999 to 99999999	R
DT00251	power (3)	kvar	Olgrica ozbit	0000000010 00000000	- 1
DT00252	Total instantaneous	0.001	Signed 32bit	-29999997 to 29999997	R
DT00253	reactive power	Kvar			
DT00254 DT00255	Instantaneous apparent power (1)	0.001 kVA	Unsigned 32bit	0 to 99999999	R
DT00255	Instantaneous apparent	0.001			
DT00257	power (2)	kVA	Unsigned 32bit	0 to 99999999	R
DT00258	Instantaneous apparent	0.001			_
DT00259	power (3)	kVA	Unsigned 32bit	0 to 99999999	R
DT00260	Total instantaneous	0.001	Ungigned 22hit	0 to 299999997	R
DT00261	apparent power	kVA	Unsigned 32bit	0 10 2333331	, r
DT00262	Voltage 1	0.01V	Unsigned 32bit	0 to 999999999	R
DT00263			3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		
DT00264	Voltage 2	0.01V	Unsigned 32bit	0 to 999999999	R
DT00265 DT00266			-		
DT00266	Voltage 3	0.01V	Unsigned 32bit	0 to 999999999	R
DT00268		0.6.11		0.4. 00000000	_
DT00269	Voltage average	0.01V	Unsigned 32bit	0 to 999999999	R
DT00270	Line voltage 1.2	0.0417	Unaigned 20kit	0 to 00000000	Р
DT00271	Line voltage 1-2	0.01V	Unsigned 32bit	0 to 999999999	R
DT00272	Line voltage 2-3	0.01V	Unsigned 32bit	0 to 999999999	R
DT00273	Line voltage 2 0	0.017	Chaighted 02bit	3.5 55555555	- '`
DT00274	Line voltage 3-1	0.01V	Unsigned 32bit	0 to 999999999	R
DT00275 DT00276	<u> </u>		<u> </u>		
DT00276	Line voltage average	0.01V	Unsigned 32bit	0 to 999999999	R
וושטעוו	<u> </u>				L

Data register	Name	Unit	Kind of data	Range	R/W
DT00278	Comment (1)	0.004.4	Lineian ad 20hit	0 to 00000000	Б
DT00279	Current (1)	0.001A	Unsigned 32bit	0 to 999999999	R
DT00280	Current (2)	0.001A	Unsigned 32bit	0 to 00000000	R
DT00281	Current (2)	0.001A	Unsigned 32bit	0 to 999999999	K
DT00282	Current (3)	0.001A	Unsigned 32bit	0 to 999999999	R
DT00283	Current (3)	0.001A	Unsigned 32bit	0 10 999999999	I.
DT00286	Current average	0.001A	Unsigned 32bit	0 to 999999999	R
DT00287	-		_		
DT00288	Frequency (1)	0.01Hz	Unsigned 16bit	0 to 10000	R
DT00289	Frequency (2)	0.01Hz	Unsigned 16bit	0 to 10000	R
DT00290	Frequency (3)	0.01Hz	Unsigned 16bit	0 to 10000	R
DT00291	Frequency average	0.01Hz	Unsigned 16bit	0 to 10000	R
DT00305	Present demand	0.001kW	Unsigned 32bit	0 to 99999999	R
DT00306	(active power)		3		
DT00307	Present demand	0.001kvar	Unsigned 32bit	0 to 99999999	R
DT00308	(reactive power)				
DT00309 DT00310	Present demand	0.001kVA	Unsigned 32bit	0 to 99999999	R
DT00310	(apparent power) Present demand				
DT00311	(active power (export))	0.001kW	Unsigned 32bit	0 to 99999999	R
DT00312	Present demand				
DT00313	(reactive power(export))	0.001kvar	Unsigned 32bit	0 to 99999999	R
DT00314	Present demand				
DT00315	(current(1))	0.001A	Unsigned 32bit	0 to 99999999	R
DT00316	Present demand		-		
DT00317	(current②)	0.001A	Unsigned 32bit	0 to 99999999	R
			-		
DT00319	Present demand (current③)	0.001A	Unsigned 32bit	0 to 99999999	R
DT00320	· · · · · · · · · · · · · · · · · · ·				_
DT00324	PF status		Unsigned 16bit	0: even, 1: Lag, 2: Lead	R
DT00325	Total integral active	0.01kWh	Unsigned 32bit	0 to 999999999	R
DT00326	power		<u> </u>		
DT00327	Total integral	0.01kvarh	Unsigned 32bit	0 to 999999999	R
DT00328 DT00329	reactive power Total integral		-		
DT00329	apparent power	0.01kVAh	Unsigned 32bit	0 to 999999999	R
DT00330	Total integral				
DT00331	export active power	0.01kWh	Unsigned 32bit	0 to 999999999	R
DT00333	Total integral export				
DT00333	reactive power	0.01kvarh	Unsigned 32bit	0 to 999999999	R
DT00335	Total integral active	0.001			_
DT00336	power	kWh	Unsigned 32bit	0 to 999999999	R
DT00337	Total integral	0.001		0.100000000	
DT00338	reactive power	kvarh	Unsigned 32bit	0 to 999999999	R
DT00339	Total integral	0.001	Unaigned 2014	0 to 000000000	Б
DT00340	apparent power	kVAh	Unsigned 32bit	0 to 999999999	R
DT00341	Total integral	0.001	Unsigned 32bit	0 to 999999999	R
DT00342	export active power	kWh	orisigned szbit	0 10 33333333	I.V.
DT00343	Total integral export	0.001	Unsigned 32bit	0 to 999999999	R
DT00344	reactive power	kvarh	Orisigned Szbit	0 10 33333333	1\
DT00345	Integral active power (1)	0.01Wh	Unsigned 32bit	0 to 999999999	R
DT00346	inagiai aotivo powoi (1)	0.017711	Shorghou ozbit	0.10.00000000	'`
DT00347	Integral active power (2)	0.01Wh	Unsigned 32bit	0 to 999999999	R
DT00348		3.31.711	2		'`
DT00349	Integral active power (3)	0.01Wh	Unsigned 32bit	0 to 999999999	R
DT00350		2.0			
DT00351	Total integral active	0.01Wh	Unsigned 32bit	0 to 999999999	R
DT00352	power				
DT00418	Temperature	0.1°C	Signed 16bit	-1000 to 1000	R
DT00664	Phase voltage THD1	0.001%	Signed 32bit	-400000 to 400000	R
DT00665				<u> </u>	

DT00666 DT00667 Phase voltage THD② 0.001% Signed 32bit -400000 to 400000 R DT00668 DT00669 Phase voltage THD③ 0.001% Signed 32bit -400000 to 400000 R DT00670 Phase voltage THD average 0.001% Signed 32bit -400000 to 400000 R DT00671 average 0.001% Signed 32bit -400000 to 400000 R DT00672 Line voltage THD 1-2 0.001% Signed 32bit -400000 to 400000 R DT00674 Line voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00675 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00678 Line voltage THD 0.001% Signed 32bit -400000 to 400000 R DT00679 Export power 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000
DT00668 Phase voltage THD③ 0.001% Signed 32bit -400000 to 400000 R DT00670 Phase voltage THD 0.001% Signed 32bit -400000 to 400000 R DT00671 average 0.001% Signed 32bit -400000 to 400000 R DT00672 Line voltage THD 1-2 0.001% Signed 32bit -400000 to 400000 R DT00674 Line voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00675 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00677 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00679 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00679 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R
DT00669 Phase voltage THD. 0.001% Signed 32bit -400000 to 400000 R DT00671 average 0.001% Signed 32bit -400000 to 400000 R DT00672 Line voltage THD 1-2 0.001% Signed 32bit -400000 to 400000 R DT00673 Line voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00675 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00676 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00679 average 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00682 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD 0.001% Signed 32bit -400000 to 400000 R
DT006670 Phase voltage THD average 0.001% Signed 32bit average -400000 to 400000 R DT00673 Line voltage THD 1-2 0.001% Signed 32bit average -400000 to 400000 R DT00674 Line voltage THD 2-3 0.001% Signed 32bit average -400000 to 400000 R DT00675 Line voltage THD 3-1 average 0.001% Signed 32bit average -400000 to 400000 R DT00678 Line voltage THD average 0.001% Signed 32bit average -400000 to 400000 R DT00679 average 0.001% Signed 32bit average -400000 to 400000 R DT00681 Current THD① 0.001% Signed 32bit average -400000 to 400000 R DT00682 Current THD② 0.001% Signed 32bit average -400000 to 400000 R DT00685 Current THD③ 0.001% Signed 32bit average -400000 to 400000 R DT05040 Export power average 0.001% Signed 32bit average 0.00000 to 400000 R DT05042 Export power conversion value (1)
DT00671 average 0.01% Signed 32bit -40000 to 400000 R DT00673 Line voltage THD 1-2 0.001% Signed 32bit -400000 to 400000 R DT00674 Line voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00675 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00677 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00678 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00682 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT00686 Current THD 0.001% Signed 32bit -400000 to 400000 R
DT00672 DT00673 DT00673 Line voltage THD 1-2 0.001% Signed 32bit signed 32
DT00673
DT00674 DT00675 Line voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00676 DT00677 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00678 DT00679 Line voltage THD average 0.001% Signed 32bit -400000 to 400000 R DT00680 DT00681 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00682 DT00683 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00684 DT00685 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00687 average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.001% Signed 32bit -400000 to 400000 R DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Conversion value (2) 0.01 Unsigned 32bit 0 to 99999999
DT00675 Line Voltage THD 2-3 0.001% Signed 32bit -400000 to 400000 R DT00676 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00679 Line voltage THD average 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 DT00683 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00684 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00686 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05046 Total export power conversion value (1) 0.01
DT00676 Line voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00678 Line voltage THD average 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00682 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00684 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.001% Signed 32bit -400000 to 400000 R DT05041 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05046
DT00677 Line Voltage THD 3-1 0.001% Signed 32bit -400000 to 400000 R DT00678 Line voltage THD average 0.001% Signed 32bit -400000 to 400000 R DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00684 Current THD 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.001% Signed 32bit -400000 to 400000 R DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05
DT00678
DT00679 average 0.001% Signed 32bit -400000 to 400000 R DT00681 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00682 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT00687 average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.001 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 conversion value (3) 0.01 Unsigned 32bit 0 to 2999999999 R DT05046 Total export power 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 <
DT006/9 average 5 DT00680 Current THD① 0.001% Signed 32bit -400000 to 400000 R DT00681 DT00682 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05046 Export power 0.001% Signed 32bit -400000 to 400000 R DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05047 Conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01
DT00681 Current THD() 0.001% Signed 32bit -400000 to 400000 R DT00682 Current THD(2) 0.001% Signed 32bit -400000 to 400000 R DT00684 Current THD(3) 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT050687 average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.001 Unsigned 32bit 0 to 999999999 R DT05041 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Total export power 0.01 Unsigned 32bit 0 to 2999999999 R DT05047 Conversion value (1) 0.01 Unsigned 32bit 0 to 9999999999 R DT05091 <
DT00681 Current THD② 0.001% Signed 32bit -400000 to 400000 R DT00683 Current THD③ 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT00686 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Conversion value (3) 0.01 Unsigned 32bit 0 to 2999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 9999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R
DT00683 Current THD(2) 0.001% Signed 32bit -400000 to 400000 R DT00684 Current THD(3) 0.001% Signed 32bit -400000 to 400000 R DT00686 Current THD average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05041 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsi
DT00684 Current THD(3) 0.001% Signed 32bit -400000 to 400000 R DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT00687 average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05045 conversion value (3) 0.01 Unsigned 32bit 0 to 299999999 R DT05046 Total export power 0.01 Unsigned 32bit 0 to 2999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094
DT00685 Current THD(3) 0.001% Signed 32bit -400000 to 400000 R DT00686 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 9999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 99999999999 R
DT00685 Current THD 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Conversion value (3) 0.01 Unsigned 32bit 0 to 2999999999 R DT05046 Total export power 0.01 Unsigned 32bit 0 to 2999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R
DT00687 average 0.001% Signed 32bit -400000 to 400000 R DT05040 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05041 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power 0.01 Unsigned 32bit 0 to 999999999 R DT05045 conversion value (3) Unsigned 32bit 0 to 2999999999 R DT05046 Total export power 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 9999999999 R
DT05040 Export power conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05041 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Total export power conversion value (3) 0.01 Unsigned 32bit 0 to 2999999999 R DT05047 conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05041 conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05042 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Total export power conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05047 conversion value 0.01 Unsigned 32bit 0 to 9999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 9999999999 R
DT05042 Export power conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 29999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05043 conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05045 Conversion value (3) 0.01 Unsigned 32bit 0 to 2999999999 R DT05047 Conversion value 0.01 Unsigned 32bit 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05043 Conversion value (2) DT05044 Export power conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 0 to 999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 2999999999 0 to 2999999999 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 0 to 999999999 R
DT05045 conversion value (3) 0.01 Unsigned 32bit 0 to 999999999 R DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 29999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 9999999999 R DT05091 Conversion value (2) 0.01 Unsigned 32bit 0 to 9999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05046 Total export power conversion value 0.01 Unsigned 32bit 0 to 2999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05091 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05047 conversion value 0.01 Unsigned 32bit 0 to 2999999997 R DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05090 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05091 Conversion value (1) 0.01 Unsigned 32bit 0 to 999999999 R DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05092 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R
DT05093 Conversion value (2) 0.01 Unsigned 32bit 0 to 999999999 R DT05094 Conversion value (2) 0.04 Unsigned 32bit 0 to 900000000 P
DT05094
DT05096
DT05097 Total conversion value 0.01 Unsigned 32bit 0 to 29999999997 R
DT31003 May demand value
DT31903 Max. definant value 0.001kW Unsigned 32bit 0 to 29999999997 R
DT31009 Max demand value
DT31909 Max. definant value 0.001kvar Unsigned 32bit 0 to 29999999997 R
DT31013 May demand value
DT31914 Max. definant value 0.001kVA Unsigned 32bit 0 to 29999999997 R
DT31018 May demand value
DT31919 Max. definant value 0.001kW Unsigned 32bit 0 to 29999999997 R
DT31023 May demand value
DT31924 reactive power (export) 0.001kvar Unsigned 32bit 0 to 2999999997 R
DT31028 May demand value
DT31929 Nax. definant value 0.001A Unsigned 32bit 0 to 999999999 R
DT31933
D131934 Current2
DT31938
DT31939 current3 0.001A Unsigned 32bit 0 to 999999999999999999999999999999999

^{* &#}x27;Range' is not the measurement range, it shows the data range.

Note1) R: Read W: Write

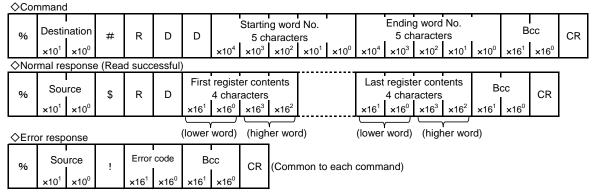
- 2) Data register except specified is 0.
- 3) If each setting value is wrote by communication, it memories to internal memory at the same time. Therefore, change setting frequently makes the internal memory's life short. Avoid to usage like this.
- 4) Write a data within the range when you write it.

Error code	Error name	Explanation
40H	Bcc error	•A Bcc error occurred in the command data.
41H	Format error	•A command message was sent that does not fit the transmission format.
42H	No support error	•A command was sent that is not supported.
43H	Procedure error	Delimiter with multiple frames was sent.The response shall be multiple frames.

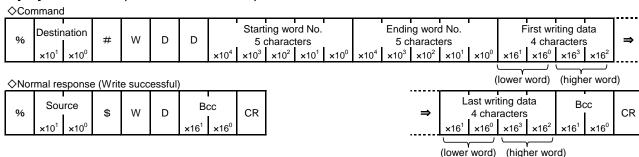
♦Application error

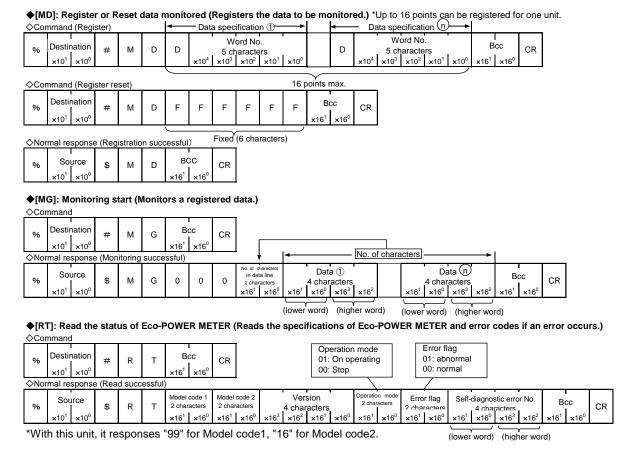
Error code	Error name	Explanation
60H	Parameter error	•The data code is not "D".
61H	Data error	•Word No. is specified without decimal.(0000F etc.)
		•The starting word No. is bigger than the ending word No.
		Writing data has a code that is not hexadecimal.
62H	Registration error	 Too many registrations have been entered (more than 17). "MD" command was sent when some registration has been exist. "MG" command was sent when registration has not been entered.

♦ Self-diagnostic error


Error code	Error name	Explanation
45H	Operation error	•At "WD" command, writing data is exceeded the range of data register.

7.3.4 Command


Eco-POWER METER has 5 kinds of commands.


Command name	Code	Explanation
Read data area	RD	Reads the contents of data area.
Write data to data area	WD	Writes data to a data area.
Resister or Reset data monitored	MD	Resisters the data to be monitored.
Monitoring start	MG	Monitors a registered data.
Read status	RT	Reads the specifications of Eco-POWER METER and error code
		if an error occurs.

◆[RD]: Read data area (Reads the contents of data area.)

◆[WD]: Write data area (Writes date to a data area.)

Note) The maximum number of reading slaves is 26 (57 bytes), the maximum number of writing slaves is 23 (55 bytes).

7.4 MODBUS (RTU) Communication

7.4.1 Overview of MODBUS (RTU)

◆8-bit binary data in command is transmitted as it is.

Data format Start bit : 1 bit

Data bit : 8 bits (Fixed)

Parity : No parity, Even parity, Odd parity Selectable

Stop bit : 1-bit, 2-bit Selectable

Error detection : CRC-16 (Cyclic Redundancy Check)
Data interval : 3.5 character transmission time or less

◆Message configuration

RTU mode is configured to start after idle time processing of more than 3.5 character transmissions and end after idle time processing of more than 3.5 character transmissions.

3.5 idle characters	Slave address	Function code	Data	Error check CRC-16	3.5 idle characters
	8-bit	8-bit	xx bits	16-bit	

Master judges the transmission complete after no command for 4-characters idle time and process the command.

*Transmission speed and judgment time to complete transmission

Transmission speed (bps)	Judgment time to complete (ms)		
38,400	about 1		
19,200	about 2		
9,600	about 4		
4,800	about 8		
2,400	about 16		
1,200	About 32		

♦Slave address:

Slave address is an individual instrument number on the slave side and is set within the range 1 to 247 (01H to F7H) for Modbus communication. Master identifies slaves by the slave address of the requested message.

Slave informs master which slave is responding to master by placing its own address in the response message. Slave address 0 (00H, broadcast address) can identify all slaves connected. However slaves do not respond.

♦ Function code: Function code is command code for the slave to undertake the following action types.

Function code	Contents
03(03H)	DT Read
06(06H)	DT1 word write
16(10H)	DT several data write

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when slave returns response message to master.

When acknowledgement is returned, slave simply returns original function code. When negative acknowledgement is returned, MSB of original function code is set as 1 for response.

For example, when the master sends request message setting 00H to function code by mistake, slave returns 80H by setting MSB to 1, because the former is an illegal function.

For negative acknowledgement, the exception codes below are set to data of response message and returned to master in order to inform it of what kind of error has occurred.

Exception code	Contents
1(01H)	Illegal Function (Non-existent function)
3(03H)	Illegal data value (Value out of the devise numbers)

note1) Even if it commands to write (06H.10H) to non-existent data address, slave response with acknowledgement. However, it doesn't write.

note2) Even if it commands to write the value out of the setting range, slave response with acknowledgement. However, it doesn't write.

note3) The maximum number of reading slaves is 26 (57-byte), the maximum number of writing slaves is 23 (55-byte).

♦ Data: Data depends on the function code.

A request message from the master side is composed of data item, number of data and setting data. A response message from the slave side is composed of number of bytes, data and exception code in negative acknowledgement.

♦ Error check: 16-bit data to detect communication errors. Refer to the next.

♦Acknowledgement response

When command is to write 1 point, same massage of command is responded.

When command is to write several points, part of command message (6-byte) is responded.

◆Error check

After calculating CRC-16 (Cyclic Redundancy Check) from slave address to the end of data, the calculated 16-bit data is appended to the end of message in sequence from low order to high order. <How to calculate CRC>

In CRC system, the information is divided by the polynomial series. The remainder is added to the end of the information and transmitted. The generation of polynomial series is as follows.

(Generation of polynomial series: $X^{16} + X^{15} + X^2 + 1$)

- 1) Initialize the CRC-16 data (assumed as X) (FFFFH).
- 2) Calculate exclusive OR (XOR) with the 1st data and X. This is assumed as X.
- 3) Shift X one bit to the right. This is assumed as X.
- 4) When a carry is generated as a result of the shift, XOR is calculated by X of 3) and the fixed value (A001H). This is assumed as X. If a carry is not generated, go to step 5).
- 5) Repeat steps 3) and 4) until shifting 8 times.
- 6) XOR is calculated with the next data and X. This is assumed as X.
- 7) Repeat steps 3) to 5).
- 8) Repeat steps 3) to 5) up to the last data.
- 9) Set X as CRC-16 to the end of message in sequence from low order to high order.

◆Message example

<1> Reading conversion rate (P) (005DH) of address 1

Command

3.5 idle characters	Slave address (01H)	Function code (03H)	Data item (005DH)	Number of data (0001H)	Error check CRC-16 (15D8H)	3.5 idle characters
	1	1	2	2	2	←character number

•Response message from slave in normal status (When Rate=1000(10.00) [03E8H])

3.5 idle characters	Slave address (01H)	Function code (03H)	Number of response byte (02H)	Number of data (03E8H)	Error check CRC-16 (B8FAH)	3.5 idle characters
	1	1	1	2	2	←character
						number

<2> Setting conversion rate (P) (005DH) of address 1 (When rate is set to 20.00(2000) [07D0H])

Command

3.5 idle characters	Slave address (01H)	Function code (06H)	Data item (005DH)	Number of data (07D0H)	Error check CRC-16 (1BB4H)	3.5 idle characters
	1	1	2	2	2	←character number

Response message from slave in normal status

3.5 idle characters	Slave address (01H)	Function code (06H)	Data item (005DH)	Number of data (07D0H)	Error check CRC-16 (1BB4H)	3.5 idle characters
	1	1	2	2	2	←character number

<3> Reset integral active power (0064H, 0065H: 2-word) of address 1

(When setting to 0 [0000, 0000H])

Command

3.5 idle characters	Slave address (01H)	Function code (10H)	Data item (0064H)	Number of data item to write (0002H)	Number of data (04H)	\Rightarrow
	1	1	2	2	1	←character number
		\Rightarrow	Data 1	Data 2	Error check CRC-16	3.5 idle
			(0000H)	(0000H)	(F474H)	characters
			2	2	2	←character number

•Response message from slave in normal status

3.5 idle characters	Slave address (01H)	Function code (10H)	Data item (0064H)	Number of data item to write (0002H)	Error check CRC-16 (0017H)	3.5 idle characters
	1	1	2	2	2	←character number

•A response message from the slave in exception (error) status

(When number of data has been mistaken.)

(8F8E)

characters

Function code MSB is set to 1 for the response message in exception (error) status (90H). The exception code 03H (Value out of the devise numbers) is returned as contents of error.

<Mistaken message example (Command)>

	3.5 idle characters	Slave address (01H)	Function code (10H)	Number of data item to write (0002H)	Number of data (06H)	\Rightarrow	
•					1 Mis	take	
			\Rightarrow	Data 1	Data 2	Error check CRC-16	3.5 idle

<Response message from slave to mistaken command

(Response message in exception (error) status)> Exception code Error check Slave Function 3.5 idle 3.5 idle address code CRC-16 characters characters (01H)(90H) (03H)(0C01H)

(0000H)

(0000H)

7.4.2 <u>Data Register List (MODBUS communication)</u> Setting

Setting					
Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function code
0032H	RS485 Device number	_	Unsigned 16bit	Mewtocol: 1H to 64H Modbus: 1H to F7H DL/T645: 0H to 270FH	03H/ 06H/10H
0033H	RS485 Transmission speed	-	Unsigned 16bit	0H: 1200 1H: 2400 2H: 4800 3H: 9600 4H: 19200 5H: 38400 6H: 57600 7H: 115200	03H/ 06H/10H
0034H	RS485 Transmission format	_	Unsigned 16bit	0H: 8bit-o 1H: 8bit-n 2H: 8bit-E	03H/ 06H/10H
0035H	RS485 Stop bit	1	Unsigned 16bit	1H, 2H	03H/ 06H/10H
0036H	RS485 Response time	1ms	Unsigned 16bit	1H to 63H	03H/ 06H/10H
0037H	Phase/Wire	_	Unsigned 16bit	0H: 1P2W 1H: 1P3W 2H: 3P3W 3H: 3P4W	03H/ 06H/10H
0038H	CT type (2 nd)	Rated A (rms)	Unsigned 16bit		03H/ 06H/10H
0039H	Primary side current of CT	1A	Unsigned 16bit	1H to FFFFH	03H/ 06H/10H
003AH	VT ratio	0.01	Unsigned 16bit	64H to EA60H	03H/ 06H/10H
003BH	Temperature correction value	0.1°C	Signed 16bit	FC18H to 3E8H	03H/ 06H/10H
0041H	Update cycle	100ms	Unsigned 16bit	1H to AH	03H/ 06H/10H
0046H	Auto-off	1min	Unsigned 16bit	0H to 63H (0H: always ON)	03H/ 06H/10H
0057H	Conversion rate (-P)	0.01	Unsigned 16bit	0H to 270FH	03H/ 06H/10H
005DH	Conversion rate (P)	0.01	Unsigned 16bit	0H to 270FH	03H/ 06H/10H
005EH	Password	_	Unsigned 16bit	0H to 270FH	03H/ 06H/10H
005FH	Auto display start	1min	Unsigned 16bit	0H to 63H (0H: fix display item)	03H/ 06H/10H
0060H	Display cycle	1sec	Unsigned 16bit	1H to 63H	03H/ 06H/10H
0061H	Luminance	_	Unsigned 16bit	1H to 5H	03H/ 06H/10H
0062H	Protocol	_	Unsigned 16bit	0H: MEWTOCOL, 1H: MODBUS, 2H: DL/T645	03H/ 06H/10H
759CH	Power demand type	_	Unsigned 16bit		03H/ 06H/10H
759DH	Power demand interval1	1min,	Unsigned 16bit	0H to 3CH	03H/ 06H/10H
759EH	Power demand interval2	1min,	Unsigned 16bit	0H to 3CH	03H/ 06H/10H
759FH	Current demand interval	1min,	Unsigned 16bit	0H to 3CH	03H/ 06H/10H
75F8H	Demand measurement status	-	Unsigned 16bit	0H: Start 1H: Stop	03H/ 06H/10H
765CH	Reset all integral value	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
765DH	Reset integral value 1	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
765EH	Reset integral value 2	-	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
765FH	Reset integral value 3	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
7662H	Reset logging data	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
7663H	Cut off current	0.1%	Unsigned 16bit	1H to 1F4H	03H/ 06H/10H

Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function code
7665H	Save display	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H
7666H	Initialize settings	_	Unsigned 16bit	0H:No 1H:Yes	03H/ 06H/10H

Measurement value

◆Data registers for 3P3W

- •Instantaneous power (active/reactive/apparent) is saved in data register of 'Total instantaneous power (active/reactive/apparent)'.
- Integral power (active/reactive/apparent) is saves in data registers of 'Total integral power (active/reactive/apparent)'.
- Frequency is saved in data register of 'Frequency average'.
- •Power factor is saved in data register of 'PF average'.

Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function code
0064H <lsb> 0065H <msb></msb></lsb>	Integral active power (1)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0066H <lsb> 0067H <msb></msb></lsb>	Integral active power (2)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0068H <lsb> 0069H <msb></msb></lsb>	Integral active power (3)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
006AH <lsb> 006BH <msb></msb></lsb>	Total integral active power	0.01kWh	Unsigned 32bit	0H to B2D05DFDH	03H
006CH <lsb> 006DH <msb></msb></lsb>	Integral reactive power (1)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
006EH <lsb> 006FH <msb></msb></lsb>	Integral reactive power (2)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0070H <lsb> 0071H <msb></msb></lsb>	Integral reactive power (3)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0072H <lsb> 0073H <msb></msb></lsb>	Total integral reactive power	0.01kvarh	Unsigned 32bit	0H to B2D05DFDH	03H
0074H <lsb> 0075H <msb></msb></lsb>	Integral apparent power (1)	0.01kVAh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0076H <lsb> 0077H <msb></msb></lsb>	Integral apparent power (2)	0.01kVAh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0078H <lsb> 0079H <msb></msb></lsb>	Integral apparent power (3)	0.01kVAh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
007AH <lsb> 007BH <msb></msb></lsb>	Total integral apparent power	0.01kVAh	Unsigned 32bit	0H to B2D05DFDH	03H
007CH <lsb> 007DH <msb></msb></lsb>	Integral export active power (1)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
007EH <lsb> 007FH <msb></msb></lsb>	Integral export active power (2)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0080H <lsb> 0081H <msb></msb></lsb>	Integral export active power (3)	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0082H <lsb> 0083H <msb></msb></lsb>	Total integral export active power	0.01kWh	Unsigned 32bit	0H to B2D05DFDH	03H
0084H <lsb> 0085H <msb></msb></lsb>	Integral export reactive power (1)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0086H <lsb> 0087H <msb></msb></lsb>	Integral export reactive power (2)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
0088H <lsb> 0089H <msb></msb></lsb>	Integral export reactive power (3)	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
008AH <lsb> 008BH <msb></msb></lsb>	Total integral export reactive power	0.01kvarh	Unsigned 32bit	0H to B2D05DFDH	03H
008CH <lsb> 008DH <msb></msb></lsb>	Instantaneous active power (1)	0.01kW	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
008EH <lsb> 008FH <msb></msb></lsb>	Instantaneous active power (2)	0.01kW	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
0090H <lsb> 0091H <msb></msb></lsb>	Instantaneous active power (3)	0.01kW	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
0092H <lsb> 0093H <msb></msb></lsb>	Total instantaneous active power	0.01kW	Signed 32bit	EE1E5D03H to 11E1A2FDH	03H
0094H <lsb> 0095H <msb></msb></lsb>	Instantaneous reactive power (1)	0.01kvar	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
0096H <lsb> 0097H <msb></msb></lsb>	Instantaneous reactive power (2)	0.01kvar	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
0098H <lsb> 0099H <msb></msb></lsb>	Instantaneous reactive power (3)	0.01kvar	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
* 1D	the measurement rene	· '10 · 1	d . late		

^{* &#}x27;Range' is not the measurement range, it shows the data range.

Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function
009AH <lsb></lsb>	Total instantaneous	0.01kvar	Signed 32bit	EE1E5D03H to 11E1A2FDH	code 03H
009BH <msb></msb>	reactive power	0.0 ikvai	-	LETESDOSITIO TTETAZI DIT	0311
009CH <lsb></lsb>	Instantaneous apparent power (1)	0.01kVA	Unsigned 32bit	0H to 5F5E0FFH	03H
009EH <lsb> 009FH <msb></msb></lsb>	Instantaneous apparent power (2)	0.01kVA	Unsigned 32bit	0H to 5F5E0FFH	03H
00A0H <lsb></lsb>	Instantaneous apparent	0.01kVA	Unsigned	0H to 5F5E0FFH	03H
00A1H <msb></msb>	power (3) Total instantaneous		32bit Unsigned		
00A3H <msb> 00A4H <lsb></lsb></msb>	apparent power	0.01kVA	32bit	0H to 11E1A2FDH	03H
00A5H <msb></msb>	Voltage 1	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00A6H <lsb> 00A7H <msb></msb></lsb>	Voltage 2	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00A8H <lsb> 00A9H <msb></msb></lsb>	Voltage 3	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00AAH <lsb></lsb>	Voltage average	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00ACH <lsb></lsb>	Line voltage 1-2	0.1V	Unsigned	0H to 3B9AC9FFH	03H
00ADH <msb> 00AEH <lsb></lsb></msb>			32bit Unsigned		
00AFH <msb></msb>	Line voltage 2-3	0.1V	32bit	0H to 3B9AC9FFH	03H
00B0H <lsb> 00B1H <msb></msb></lsb>	Line voltage 3-1	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00B2H <lsb> 00B3H <msb></msb></lsb>	Line voltage average	0.1V	Unsigned 32bit	0H to 3B9AC9FFH	03H
00B4H <lsb> 00B5H <msb></msb></lsb>	Current (1)	0.01A	Unsigned 32bit	0H to 3B9AC9FFH	03H
00B6H <lsb></lsb>	Current (2)	0.01A	Unsigned	0H to 3B9AC9FFH	03H
00B7H <msb> 00B8H <lsb> 00B9H <msb></msb></lsb></msb>	Current (3)	0.01A	32bit Unsigned 32bit	0H to 3B9AC9FFH	03H
00BCH <lsb></lsb>	Current average	0.01A	Unsigned	0H to 3B9AC9FFH	03H
00BDH <msb></msb>	Frequency (1)	0.1Hz	32bit Unsigned	0H to 3E8H	03H
00BFH	Frequency (2)	0.1Hz	16bit Unsigned	0H to 3E8H	03H
00C0H	Frequency (3)	0.1Hz	16bit Unsigned	0H to 3E8H	03H
00C1H	Frequency average	0.1Hz	16bit Unsigned	OH to 3E8H	03H
00C1H	PF (1)	0.001	16bit Signed 16bit	FC18H to 3E8H	03H
00C3H	PF (2)	0.001	Signed 16bit	FC18H to 3E8H	03H
00C4H	PF (3)	0.001	Signed 16bit	FC18H to 3E8H	03H
00C5H	PF average	0.001	Signed 16bit	FC18H to 3E8H	03H
00C6H <lsb></lsb>	Integral active power (1)	0.001	Unsigned	0H to 3B9AC9FFH	03H/10H
00C7H <msb> 00C8H <lsb></lsb></msb>		0.001	32bit Unsigned		
00C9H <msb></msb>	Integral active power (2)	kWh	32bit	0H to 3B9AC9FFH	03H/10H
00CAH <lsb> 00CBH <msb></msb></lsb>	Integral active power (3)	0.001 kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
00CCH <lsb></lsb>	Total integral active power	0.001 kWh	Unsigned 32bit	0H to B2D05DFDH	03H
00CEH <lsb></lsb>	Integral	0.001	Unsigned	0H to 3B9AC9FFH	03H/10H
00CFH <msb> 00D0H <lsb></lsb></msb>	reactive power (1) Integral	6.001	32bit Unsigned	0H to 3B9AC9FFH	03H/10H
00D1H <msb> 00D2H <lsb></lsb></msb>	reactive power (2) Integral	kvarh 0.001	32bit	01110 00071001111	0011/1011
00D3H <msb></msb>	reactive power (3)	kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
00D4H <lsb> 00D5H <msb></msb></lsb>	Total integral reactive power	0.001 kvarh	Unsigned 32bit	0H to B2D05DFDH	03H
	the measurement rang			<u>.</u>	1

^{* &#}x27;Range' is not the measurement range, it shows the data range.

Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function
00D6H <lsb></lsb>	Integral	0.001	Unsigned	-	code
00D7H <msb></msb>	apparent power (1)	kVAh	32bit	0H to 3B9AC9FFH	03H/10H
00D8H <lsb></lsb>	Integral	0.001	Unsigned	0H to 3B9AC9FFH	03H/10H
00D9H <msb> 00DAH <lsb></lsb></msb>	apparent power (2) Integral	kVAh 0.001	32bit Unsigned		
00DBH <msb></msb>	apparent power (3)	kVAh	32bit	0H to 3B9AC9FFH	03H/10H
00DCH <lsb></lsb>	Total integral	0.001	Unsigned	0H to B2D05DFDH	03H
00DDH <msb></msb>	apparent power Integral export active	kVAh 0.001	32bit Unsigned		
00DEH <lsb></lsb>	power (1)	kWh	32bit	0H to 3B9AC9FFH	03H/10H
00E0H <lsb> 00E1H <msb></msb></lsb>	Integral export active power (2)	0.001 kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H/10H
00E2H <lsb></lsb>	Integral export active	0.001	Unsigned	0H to 3B9AC9FFH	03H/10H
00E3H <msb></msb>	power (3)	kWh	32bit	OTTO SESACSTTT	0311/1011
00E4H <lsb> 00E5H <msb></msb></lsb>	Total integral export active power	0.001 kWh	Unsigned 32bit	0H to B2D05DFDH	03H
00E6H <lsb></lsb>	Integral export	0.001	Unsigned	0114 0004005511	0011/4011
00E7H <msb></msb>	reactive power (1)	kvarh	32bit	0H to 3B9AC9FFH	03H/10H
00E8H <lsb></lsb>	Integral export	0.001	Unsigned	0H to 3B9AC9FFH	03H/10H
00E9H <msb> 00EAH <lsb></lsb></msb>	reactive power (2) Integral export	kvarh 0.001	32bit Unsigned		
00EBH <msb></msb>	reactive power (3)	kvarh	32bit	0H to 3B9AC9FFH	03H/10H
00ECH <lsb></lsb>	Total integral export	0.001	Unsigned	0H to B2D05DFDH	03H
00EDH <msb></msb>	reactive power	kvarh	32bit	01110 323 0031 311	0011
00EEH <lsb></lsb>	Instantaneous active power (1)	0.001 kW	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00F0H <lsb></lsb>	Instantaneous active	0.001	0:	EAGA4E04114-	0011
00F1H <msb></msb>	power (2)	kW	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00F2H <lsb></lsb>	Instantaneous active	0.001	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00F3H <msb> 00F4H <lsb></lsb></msb>	power (3) Total instantaneous	kW 0.001	-		
00F5H <msb></msb>	active power	kW	Signed 32bit	EE1E5D03H to 11E1A2FDH	03H
00F6H <lsb> 00F7H <msb></msb></lsb>	Instantaneous reactive power (1)	0.001 kvar	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00F8H <lsb></lsb>	Instantaneous reactive	0.001	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00F9H <msb></msb>	power (2)	kvar	Signed 32bit	PAGATFOTT TO SESECEPT	0311
00FAH <lsb> 00FBH <msb></msb></lsb>	Instantaneous reactive power (3)	0.001 kvar	Signed 32bit	FA0A1F01H to 5F5E0FFH	03H
00FCH <lsb></lsb>	Total instantaneous	0.001	Signed 32bit	EE1E5D03H to 11E1A2FDH	03H
00FDH <msb></msb>	reactive power	kvar		EETESDOSITIO TTETAZEDIT	0311
00FEH <lsb> 00FFH <msb></msb></lsb>	Instantaneous apparent power (1)	0.001 kVA	Unsigned 32bit	0H to 5F5E0FFH	03H
0100H <lsb></lsb>	Instantaneous apparent	0.001	Unsigned	01142 555505511	0011
0101H <msb></msb>	power (2)	kVA	32bit	0H to 5F5E0FFH	03H
0102H <lsb> 0103H <msb></msb></lsb>	Instantaneous apparent power (3)	0.001 kVA	Unsigned 32bit	0H to 5F5E0FFH	03H
0104H <lsb></lsb>	Total instantaneous	0.001	Unsigned	0114-4454025011	0011
0105H <msb></msb>	apparent power	kVA	32bit	0H to 11E1A2FDH	03H
0106H <lsb> 0107H <msb></msb></lsb>	Voltage 1	0.01V	Unsigned 32bit	0H to 3B9AC9FFH	03H
0108H <lsb></lsb>	Voltage 2	0.01V	Unsigned	0H to 3B9AC9FFH	03H
0109H <msb></msb>	V Jilaye Z	0.017	32bit		0311
010AH <lsb> 010BH <msb></msb></lsb>	Voltage 3	0.01V	Unsigned 32bit	0H to 3B9AC9FFH	03H
010CH <lsb> 010DH <msb></msb></lsb>	Voltage average	0.01V	Unsigned 32bit	0H to 3B9AC9FFH	03H
010EH <lsb> 010FH <msb></msb></lsb>	Line voltage 1-2	0.01V	Unsigned 32bit 0H to 3B9AC9FFH		03H
0110H <lsb> 0111H <msb></msb></lsb>	Line voltage 2-3	0.01V	Unsigned 32bit	0H to 3B9AC9FFH	03H
0112H <lsb></lsb>	Line voltage 3-1	0.01V	Unsigned	0H to 3B9AC9FFH	03H
0113H <msb></msb>	the measurement rand		32bit		

^{* &#}x27;Range' is not the measurement range, it shows the data range.

Data register	Name	Unit	Kind of data	Range: Hexadecimal	Function code
0114H <lsb> 0115H <msb></msb></lsb>	Line voltage average	0.01V	Unsigned 32bit	0H to 3B9AC9FFH	03H
0116H <lsb> 0117H <msb></msb></lsb>	Current (1)	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
0118H <lsb> 0119H <msb></msb></lsb>	Current (2)	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
011AH <lsb> 011BH <msb></msb></lsb>	Current (3)	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
011EH <lsb> 011FH <msb></msb></lsb>	Current average	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
0120H	Frequency (1)	0.01Hz	Unsigned 16bit	0H to 2710H	03H
0121H	Frequency (2)	0.01Hz	Unsigned 16bit	0H to 2710H	03H
0122H	Frequency (3)	0.01Hz	Unsigned 16bit	0H to 2710H	03H
0123H	Frequency average	0.01Hz	Unsigned 16bit	0H to 2710H	03H
0131H <lsb> 0132H<msb></msb></lsb>	Present demand (active power)	0.001kW	Unsigned 32bit	0H to 5F5E0FFH	03H
0133H <lsb> 0134H<msb></msb></lsb>	Present demand (reactive power)	0.001kvar	Unsigned 32bit	0H to 5F5E0FFH	03H
0135H <lsb> 0136H<msb></msb></lsb>	Present demand (apparent power)	0.001kVA	Unsigned 32bit	0H to 5F5E0FFH	03H
0137H <lsb> 0138H<msb></msb></lsb>	Present demand (active power (export))	0.001kW	Unsigned 32bit	0H to 5F5E0FFH	03H
0139H <lsb> 013AH<msb></msb></lsb>	Present demand (reactive power (export))	0.001kvar	Unsigned 32bit	0H to 5F5E0FFH	03H
013BH <lsb> 013CH<msb></msb></lsb>	Present demand (current①)	0.001A	Unsigned 32bit	0H to 5F5E0FFH	03H
013DH <lsb> 013EH<msb></msb></lsb>	Present demand (current②)	0.001A	Unsigned 32bit	0H to 5F5E0FFH	03H
013FH <lsb> 0140H<msb></msb></lsb>	Present demand (current③)	0.001A	Unsigned 32bit	0H to 5F5E0FFH	03H
0144H	PF status	_	Unsigned 16bit	0H: even, 1H: Lag, 2H: Lead	03H
0145H <lsb> 0146H<msb></msb></lsb>	Total integral active power	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0147H <lsb> 0148H<msb></msb></lsb>	Total integral reactive power	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0149H <lsb> 014AH<msb></msb></lsb>	Total integral apparent power	0.01kVAh	Unsigned 32bit	0H to 3B9AC9FFH	03H
014BH <lsb> 014CH<msb></msb></lsb>	Total integral export active power	0.01kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H
014DH <lsb> 014EH<msb></msb></lsb>	Total integral export reactive power	0.01kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H
014FH <lsb> 0150H<msb></msb></lsb>	Total integral active power	0.001 kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0151H <lsb> 0152H<msb></msb></lsb>	Total integral reactive power	0.001 kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0153H <lsb> 0154H<msb></msb></lsb>	Total integral apparent power	0.001 kVAh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0155H <lsb> 0156H<msb></msb></lsb>	Total integral export active power	0.001 kWh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0157H <lsb> 0158H<msb></msb></lsb>	Total integral export reactive power	0.001 kvarh	Unsigned 32bit	0H to 3B9AC9FFH	03H
0158H <msb> 0159H<lsb> 015AH<msb></msb></lsb></msb>	Integral active power (1)	0.01Wh	Unsigned 32bit	0H to 3B9AC9FFH	03H
015BH <lsb> 015CH<msb></msb></lsb>	Integral active power (2)	0.01Wh	Unsigned 32bit	0H to 3B9AC9FFH	03H
015DH <lsb> 015EH<msb></msb></lsb>	Integral active power (3)	0.01Wh	Unsigned 32bit	0H to 3B9AC9FFH	03H
	the measurement rand	o it shows		<u> </u>	

^{* &#}x27;Range' is not the measurement range, it shows the data range.

0160H <msb> por 01A2H Tel 0298H<lsb> 0299H<msb> Ph</msb></lsb></msb>	tal integral active wer mperature ase voltage THD① ase voltage THD②	0.01Wh 0.1°C 0.001%	Unsigned 32bit Signed	0H to 3B9AC9FFH	code 03H
01A2H Tel 0298H <lsb> Ph 0299H<msb> 029AH<lsb> Ph</lsb></msb></lsb>	mperature ase voltage THD①		Signed		
0299H <msb> Ph 029AH<lsb> Ph</lsb></msb>	-	0.001%	16bit	FC18H to 3E8H	03H
0299H <msb> 029AH<lsb></lsb></msb>	-		Signed 32bit	FFF9E580H to 61A80H	03H
029BH <msb> </msb>		0.001%	Signed	FFF9E580H to 61A80H	03H
029CH <lsb> Ph</lsb>	ase voltage THD3	0.001%	32bit Signed	FFF9E580H to 61A80H	03H
	ase voltage THD	0.001%	32bit Signed	FFF9E580H to 61A80H	03H
02A0H <lsb> Lin</lsb>	erage ne voltage THD 1-2	0.001%	32bit Signed	FFF9E580H to 61A80H	03H
02A1H <msb> Lin 02A2H<lsb> Lin</lsb></msb>	ne voltage THD 2-3	0.001%	32bit Signed 32bit	FFF9E580H to 61A80H	03H
0244HzLSB>	ne voltage THD 3-1	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
02A6H <lsb> Lin</lsb>	ne voltage THD	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
02/0H / CB>	erage irrent THD①	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
0244H / CB>	rrent THD②	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
02ACH-I SB>	rrent THD③	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
02AEH <lsb> Cu</lsb>	Irrent THD erage	0.001%	Signed 32bit	FFF9E580H to 61A80H	03H
13B0H <lsb> Ex</lsb>	port power nversion value (1)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13B2H <lsb> Ex</lsb>	port power nversion value (2)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13B4H <lsb> Ex</lsb>	port power nversion value (3)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13B6H <lsb> To</lsb>	tal export power	0.01	Unsigned 32bit	0H to B2D05DFDH	03H
13E2H / SB	onversion value (1)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13E4H <lsb> 13E5H <msb></msb></lsb>	onversion value (2)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13E6H / SR	onversion value (3)	0.01	Unsigned 32bit	0H to 3B9AC9FFH	03H
13F8H < I SB>	tal conversion value	0.01	Unsigned 32bit	0H to B2D05DFDH	03H
7C9FH <lsb> Ma</lsb>	ax. demand value tive power	0.001 kW	Unsigned 32bit	0H to B2D05DFDH	03H
7CA4H <lsb> Ma</lsb>	ax. demand value active power	0.001 kvar	Unsigned 32bit	0H to B2D05DFDH	03H
7CA9H <lsb> Ma</lsb>	ax. demand value parent power	0.001 kVA	Unsigned 32bit	0H to B2D05DFDH	03H
7CAEH <lsb> Ma</lsb>	ax. demand value tive power (export)	0.001 kW	Unsigned 32bit	0H to B2D05DFDH	03H
7CB3H <lsb> Ma</lsb>	ax. demand value active power (export)	0.001 kvar	Unsigned 32bit	0H to B2D05DFDH	03H
7CB8H <lsb> Ma</lsb>	ax. demand value rrent1	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
7CBDH <lsb> Ma 7CBEH<msb> cur</msb></lsb>	ax. demand value rrent2	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H
	ax. demand value rrent3	0.001A	Unsigned 32bit	0H to 3B9AC9FFH	03H

^{* &#}x27;Range' is not the measurement range, it shows the data range.
<LSB>: Least Significant Byte
<MSB>: Most Significant Byte

note 1) 03H: Read 06H/10H: Write

- 2) Data register except specified is "0".
- 3) If each setting value is wrote by communication, it memories to internal memory at the same time. Therefore, change setting frequently makes the internal memory's life short. Avoid to usage like this.
- 4) Write a data within the range when you write it.

7.5 DL/T645-2007 communication

7.5.1 Overview of DL/T645-2007

Only 2007 version of DL/T645 is supported. Other version is not supported.

◆DL/T645-2007 transmission settings are as below.

•				
	Transmission format	8bit		
	Parity	Even (fixed)		
	Stop bit	1bit (fixed)		
	Response time	50ms (fixed)		
	Stop time between byte	500ms or more		

♦Frame format

Frame start number	68H
	A0
	A1
Address field	A2
Address field	A3
	A4
	A5
Frame start symbol	68H
Control code	С
Data field length	L
Data field	DATA
Check code	CS
End symbol	16H

Address field (A0 to A5)

Address (device number) is consisted of 6-byte (12-digit), but the range is 0 to 9999.

(When the number of digit is not filled, it fills it up with '0'.)

Transmission address '99999999999H' is not supported.

Address field supports wild card. It fills it up with AA from the lower to upper without any value.

When it transmits address field, it transmits from lower to upper. (A0 A1 A2 A3 A4 A5)

Ex.) In case of that the address is 55H.

·Correct address field

	Transmission format
Without wild card	55 00 00 00 00 00
With wild card	55 00 AA AA AA AA

·Case that is NG with wild card

Address field	Reason
55 00 00 AA 00 AA	There is '00' between 'AA' and 'AA'.
55 00 00 A0 AA AA	A3 of address field is not 'AA'.

Control code (C)

С							
D7	D6	D5	D4	D3	D2	D1	D0
Transmission direction	Slave response flag	Subsequent frame flag		Fur	nction c	ode	

Item		Contents
Transmission direction (D7)	0	Command frame from master
	1	Response frame from slave
Slave response flag (D6) 0		Slave response is correct.
	1	Slave response is wrong.
Subsequent frame flag (D5)	0	No subsequent data
	1	With subsequent data
Function code (D4 to D0)	00000	Vacant
	01000	Not support
	10001	Read out data
	10010	Not support
	10011	Read out transmission address (device number)
	10100	Write data
	10101	Write transmission address (device number)
	10110	Not support
	10111	Change transmission speed
	11000	Change password
	11001	Not support
	11010	Reset integral power
	11011	Not support

Data field length (L)

It is byte count of data field.

Read :L≦200, Write: L≦50 L=0 means no data field.

Data field (DATA)

Data field is consisted of 'data type', 'password', 'workers code', 'frame number' and so on.

The content differs according to the control code.

When data is transmitted, 33H is added to each byte. When data is received, 33H is subtracted from each byte.

Ex.) Transmission in case of that data identification is '04 03 FF 00 (DI3, DI2, DI1, DI0)'

Code	Value	Calculation
DI3	37	= 04 + 33
DI2	36	= 03 + 33
DI1	32	= FF + 33 (FF + 33 equal 132. But it makes1 byte data, 32.)
DI0	33	= 00 + 33

It transmits from the lower, data field is '33 32 36 37(DI0 DI1 DI2 DI3)'.

Ex.) In case of the receiving data is '45 34 (N1 N0'. (Receive voltage 112V)

Code	Value	Calculation
N1	12	= 45-33
N0	01	= 34-33

It receives from the lower, it is 'N0 N1' and the voltage is 112V.

(It receives with hexadecimal but it doesn't convert the value subtract 33 to decimal.)

Check code (CS)

It is lower 1 byte in total of all byte from frame start symbol to data field.

Ex.) In case of that the transmission command is '68 01 00 00 00 00 00 68 11 04 33 33 34 33 CS 16', Check code (CS) is as below.

$$68 + 01 + 00 + 00 + 00 + 00 + 00 + 68 + 11 + 04 + 33 + 33 + 34 + 33 = 1B3$$

CS = B3 (CS is lower 1 byte.)

End symbol (16H)

There is 16H at the end of frame.

◆Command for each control code

Read out data

Data read out by the data identifications.

-Command from master; Control code 11H

(68H	A0	A1	A2	A3	A4	A5	68H	11H	04H	
					on add or AA				Control code	Data length	continue

⇒	DI0	DI1	DI2	DI3	CS	16H
→ continue	,		ntification			
COMMITTEE	(Add 33H	H to data i	dentification	on value)		

Response from slave (normal)

68	Н	A0	A1 A2 A3		A0 A1		A4	A5	68H	91H	L	
			Trar	nsmissi (A0 t	on add o A5)	ress				Data length (Data identification byte +data byte)	⇒ continue	

→	DI0	DI1	DI2	DI3	N1	• • •	Nm	CS	16H
⇒ continue		Data ider	ntification		Data (Ad				
Continue	(Add 33	H to data i	dentificatio	n value)	value a	and setting	value)		

Read out transmission address

It read out the transmission address (device number).

It is available only when master and slave is 1:1.

Command from master; Control code 13H

68H	AAH	AAH	AAH	AAH	AAH	AAH	68H	13H	00H	CS	16H
	Transmission address (AAH fix)						Control code				

Response from slave (normal)

68H	A0	A1	A2	A3	A4	A5	68H	93H	06H	⇒
	Trans	smission	addres	s read c	ut from	slave				continue

\Rightarrow	A0	A1	A2	A3	A4	A5	CS	16H
continue	Tra	ansmissio	on addres	s read ou	t from sla	ve		

^{*}No response when slave is abnormal.

Write data

It is available only with pressing <MODE> key (programming key).

Without pressing programming key, it doesn't response.

For data writing, authorization level (PA0) should be designated, but only '0' is supported.

For workers code, it doesn't record and the code is fixed to '0'.

Command from master; Control code 14H

Data length (L); Byte count of data identification + Byte count of password authorization level + Byte count of password + Byte count of workers code + Byte count of data to write

68H	A0	A1	A2	A3	A4	A5	68H	14F	1	L	⇒	
			nsmission (10 A5					Control	code		contir	nue
⇒	DI	DI1	DI2	DI3		P <i>P</i>		P0	P1	P2		⇒
continu	ie	Data id	entifica	tion	Aut	horizat: (33H	ation level Passwo H fix) (P2:33H					tinue
								1		1		
		\Rightarrow		C0	C1	C2	C3	N1	•	Nm	CS	16H
		continu	ue	Work	ers cod	de (33F	l fix)	W	riting da	ata		
Respoi	nse fron	n slave	(normal)								
68H	A0	A1	A2	A3	A4	A5	68H	94H	00H	CS	16H	

Write transmission address

It writes the transmission address (device number). It is available only when master and slave is 1:1. Without pressing programming key, it doesn't response.

-Command from master; Control code 15H

			,											
68H	AAH	AAH	AAH	AAH	AAH	AAH	68H		15H		06H		\Rightarrow	
	Т	ransmi	ssion a	ddress	(AAH fi	x)			Control co	ode			contin	ue
														-
			⇒	Α	0 A	.1 /	42	<u> </u>	A4	A5	5 CS	3	16H	İ
	continue (Add 33H to transmission address value)									\				

Response from slave (normal)

110000	1100 1101	1 0.410	(110111141)								
68H	A0	A1	A2	A3	A4	A5	68H	95H	00H	CS	16H
	New transmission address										

^{*}No response when slave is abnormal.

Change transmission speed

It changes the transmission speed after it returns the response.

-Command from master; Control code 17H

68H	A0	A1	A2	А3	A4	A5	68H	17H	01H	Z	CS	16H
	Transmission address			Control code		Transmission speed (bit flag)						

	bit	Transmission speed [bps]
Transmission speed	Bit 7	38400
(bit flag)	Bit 6	19200
	Bit 5	9600
	Bit 4	4800
	Bit 3	2400
	Bit 2	1200
	Bit 1	vacant
	Bit 0	vacant

Response from slave (normal)

68H	A0	A1	A2	А3	A4	A5	68H	97H	01H	Z	CS	16H
Transmission address					3				Transmission speed (bit flag)			

Change password

It changes password.

It is available only with pressing <MODE> key (programming key).

Without pressing programming key, it doesn't response.

For changing password, authorization level (PA0) should be designated, but only '0' is supported.

-Command from master; Control code 18H

68H	A0	A1	A2	A3	A4	A5	68H	18H	0CH	\Rightarrow
		Tra	nsmissi	on addi	ess			Control code		continue

	DI0	DI1	DI2	DI3	PA	P0	P1	P2	
⇒		-	33 37		Designate authorization	Design	⇒		
Continue	`		01 0C C	,	level (33H fix)		ord (P2: 3		continue

⇒	PAn	P0n	P1n	P2n	CS	16H
continue	Authorization level for password to change (33H fix)		w passw 2n: 33H f			

Response from slave (normal)

68H	A0	A1	A2	A3	A4	A5	68H	18H	04H	⇒
•		Trans	smissi	on ad				continue		

PAn	P0n	P1n	P2n	CS	16H
Authorization level for changed	Chan	ged pas	sword		
password (33H fix)	(P:	2n: 33H	fix)		

Reset integral power

It reset all integral power.

For reset integral power, workers code should be designated, but it doesn't record and the code is fixed to '0'. It is available only with pressing <MODE> key (programming key).

Command from master; control code 1AH

68H	A0	A1	A2	A3	A4	A5	68H	1AH	08H	\Rightarrow
	Transmission address							Control code		continue

\Rightarrow	PA	P0	P1	P2	⇒
continue	Authorization level (33H fix)	Passw	ord (P2: 33	3H fix)	continue

\Rightarrow	C0	C1	C2	C3	CS	16H
continue	Wo	orkers co	de (33H	fix)		

·Response from slave (normal)

			(/								
68H	A0	A1	A2	А3	A4	A5	68H	9AH	00H	CS	16H

Abnormal command from slave

Control code (C); C0H (Response from slave is abnormal.)

+ Control code when error occurs.

68H	A0	A1	A2	A3	A4	A5	68H	С	01H	ERR	16H
								Control code		Error code (bit flag)	

	Bit flag	Contents
Contents of	Bit 7	Not support
error code	Bit 6	Not support
	Bit 5	Not support
	Bit 4	Not support
	Bit 3	Impossible to change transmission speed
	Bit 2	Password mistake
	Bit 1	No request data
	Bit 0	Other errors

Conditions for no response

With the below conditions, slave doesn't response.

- Parity error
- ·CS error
- Data length (L) doesn't match byte count.
- Error at write or read of transmission address
- Not press programming key (<MODE> key)

Programming key

Programming key is <MODE> key.

With every display, it is possible to change the settings only when pressing <MODE> key.

7.5.2 Data list

	ta ider		tion		Data		l																	
DI_3	DI_2	DI ₁	DI_0	Name	format	unit	byte	range	R/W															
			00	Transmission protocol	Х	_	1	0:Mewtocol, 1:Modbus 2:DL/T645	R/W															
04	05	00	01	Transmission format	Х	_	1	0:8bit-Odd, 1:8bit-None 2:8bit-Even	R/W															
			02	Stop bit	Х	_	1	1, 2	R/W															
			03	Response time	XX	ms	1	1 to 99	R/W															
			01	CT type (2 nd)	X	Α	1	1, 5	R/W															
			02	Primary side current of CT	XXXXX	Α	2	1 to 65535	R/W															
04	05	01	03	VT ratio	XXX.XX	_	3	100 to 60000	R/W															
			09	Conversion rate (P)	XX.XX	_	2	0 to 9999	R/W															
			0F	Conversion rate (-P)	XX.XX	_	2	0 to 9999	R/W															
			00	Auto-off	XX	min	1	0 to 99 (0: always ON)	R/W															
			01	Luminance	X	_	1	1 to 5	R/W															
04	05	03	02	Auto display start	XX	min	1	0 to 99 (0: fix display item)	R/W															
04	03	03	03	Display cycle	XX	min	1	1 to 99	R/W															
			04	Temperature correction value	XXX.X	°C	2	-100.0 to 100.0	R/W															
			05	Update cycle	XX	100ms	1	1 to 10	R/W															
			00	Power demand type	X	_	1	1:sliding block 2:fixed block	R/W															
04	05	05	01	Power demand interval1	XX	1min,	1	1 to 60	R/W															
			02	Power demand interval2	XX	1min,	1	1 to 60	R/W															
			03	Current demand interval	XX	1min,	1	1 to 60	R/W															
	01	5 00 9	00		Total integral active power	XXXXXX.XX	kWh	4	0 to 999999.99	R														
00	15 29 3D			00	00	00	Integral active power (1)	XXXXXX.XX	kWh	4	0 to 999999.99	R												
																						Integral active power (2)	XXXXXX.XX	kWh
				Integral active power (3)	XXXXXX.XX	kWh	4	0 to 999999.99	R															
	0B	00	00		Total integral reactive power	XXXXXX.XX	kvarh	4	0 to 999999.99	R														
00	1F 33			00	00	00	00	00	00	00	00	00	Integral reactive power (1)	XXXXXX.XX	kvarh	4	0 to 999999.99	R						
				Integral reactive power (2)	XXXXXX.XX	kvarh	4	0 to 999999.99	R															
	47			Integral reactive power (3)	XXXXXX.XX	kvarh	4	0 to 999999.99	R															
	09			Total integral apparent power	XXXXXX.XX	kVAh	4	0 to 999999.99	R															
00	1D	00	00	00	00	00	00	00	00	00	00	00	00	00	00	integral apparent power (1)	XXXXXX.XX	kVAh	4	0 to 999999.99	R			
	31			integral apparent power (2)	XXXXXX.XX	kVAh	4	0 to 999999.99	R															
	45			integral apparent power (3)	XXXXXX.XX	kVAh	4	0 to 999999.99	R															
	02			Total integral export active power	XXXXXX.XX	kWh	4	0 to 999999.99	R															
00	16 2A	00	00	Integral export active power (1)	XXXXXX.XX	kWh	4	0 to 999999.99	R															
		00	50	33	33	30			Integral export active power (2)	XXXXXX.XX	kWh	4	0 to 999999.99	R										
	3E			Integral export active power (3)	XXXXXX.XX	kWh	4	0 to 999999.99	R															
	0C			Total integral export reactive power	XXXXXX.XX	kvarh	4	0 to 999999.99	R															
00	20	00	00	Integral export reactive power (1)	XXXXXX.XX	kvarh	4	0 to 999999.99	R															
00	34	00		Integral export reactive power (2)	XXXXXX.XX	kvarh	4	0 to 999999.99	R															
	48			Integral export reactive power (3)	XXXXXX.XX	kvarh	4	0 to 999999.99	R															

Dat	Data identification Name Data unit byte range					DAA			
DI ₃	DI ₂	DI ₁	DI_0		format	unit	byte	range	R/W
		00		Total instantaneous active power	XX.XXXX	kW	3	-79.999 to 79.999	R
		01		Instantaneous active power (1)	XX.XXXX	kW	3	-79.999 to 79.999	R
02	03	02	00	Instantaneous active power (2)	XX.XXXX	kW	3	-79.999 to 79.999	R
		03		Instantaneous active power (3)	XX.XXXX	kW	3	-79.999 to 79.999	R
		FF		Instantaneous active power data block			12		
		00		Total instantaneous reactive power	XX.XXXX	kvar	3	-79.999 to 79.999	R
		01		Instantaneous reactive power (1)	XX.XXXX	kvar	3	-79.999 to 79.999	R
02	04	02	00	Instantaneous reactive power (2)	XX.XXXX	kvar	3	-79.999 to 79.999	R
		03		Instantaneous reactive power (3)	XX.XXXX	kvar	3	-79.999 to 79.999	R
		FF		Instantaneous reactive power data block			12		R
	05	00	00	Total instantaneous apparent power	XX.XXXX	KVA	3	0 to 99.9999	R
		01		Instantaneous apparent power (1)	XX.XXXX	KVA	3	0 to 99.9999	R
02		02		Instantaneous apparent power (2)	XX.XXXX	KVA	3	0 to 99.9999	R
		03		Instantaneous apparent power (3)	XX.XXXX	KVA	3	0 to 99.9999	R
		FF		Instantaneous apparent power data block			12		R
		01	- 00	Voltage 1	XXX.X	V	2	0 to 999.9	R
02	01	02		Voltage 2	XXX.X	V	2	0 to 999.9	R
02	01	03	00	Voltage 3	XXX.X	V	2	0 to 999.9	R
		FF		Voltage data block			6		R
		01 02		Line voltage 1-2	XXX.X	V	2	0 to 999.9	R
02	0C		02	00	Line voltage 2-3	XXX.X	V	2	0 to 999.9
02	00	03	03 00	Line voltage 3-1	XXX.X	V	2	0 to 999.9	R
		FF		Line voltage data block			6		R
		01		Current 1	XXX.XXX	Α	3	0 to 999.999	R
		02		Current 2	XXX.XXX	Α	3	0 to 999.999	R
02	02	03	00	Current 3	XXX.XXX	A	3	0 to 999.999	R
		FF		Current data block	70007	, ,	9		R
		00		Power factor (average)	X.XXX		2	-1.000 to 1.000	R
		01		Power factor 1	X.XXX		2	-1.000 to 1.000	R
02	06		00	Power factor 2	X.XXX X.XXX		2	-1.000 to 1.000	R
02	00	02	00	Power factor 3	X.XXX		2	-1.000 to 1.000	R
		FF		Power factor data block	۸.۸۸۸		8	-1.000 to 1.000	R
-		ГГ	02	Frequency (average)	XX.XX	Hz	2	0 to 99.99	R
02	80	00	02	Temperature	XX.X	°C	2	-99.9 to 99.9	R
			O1	Tomperature	//./\			00.0 10 00.0	11

^{*}For signed data, the upper bit shows the sign. '0' shows plus and '1' shows minus.

Chapter 8 How to update the firmware

The firmware of Eco-POWER METER can be upgraded via USB communication. KW Upgrade Tool and USB cable is necessary to upgrade the firmware. Use the latest KW Version Upgrade Tool.

8.1 How to install USB driver

It is necessary to install USB driver (kw9musb_vxxx.inf) for connecting KW9M Eco-POWER METER via USB communication.

- * Once installing USB driver, it is not necessary to install from the second time.
- * When you change the using port, install the driver again.

Turn on KW9M and connect KW9M and PC via USB cable. After that, install USB driver according to your OS.

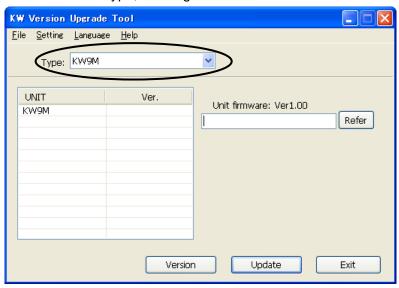
8.2 How to update the firmware

8.2.1 Prepare Eco-POWER METER to update

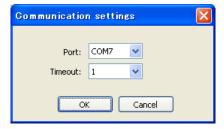
Shift the device to update mode according to the below procedures.

- 1) Press 2 keys of <MODE> and <ITEM/▲> for 10 seconds.
- 2) Password entry window will be displayed. Enter the password.

[PROG] on the upper line and the current version [x.xx] on the middle line are displayed.

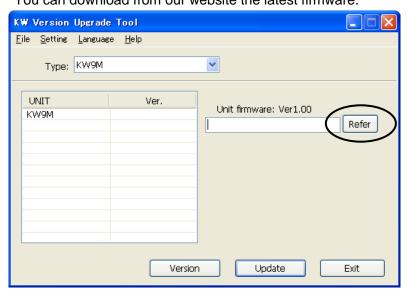

This is ready to update the firmware of Eco-POWER METER.

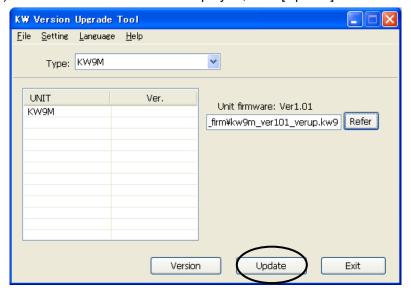
200 100


8.2.2 <u>Connect PC and Eco-POWER METER</u> Connect a PC via USB with Eco-POWERE METER.

8.2.3 <u>Update the firmware using KW Version Upgrade Tool</u> Connect Eco-POWER METER to PC via USB cable.

- 1) Start "KW Version Upgrade Tool".
- 2) Select "KW9M" at Type, it changes the window for KW9M.

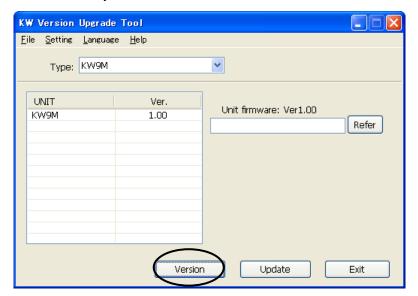

3) Set using port and timeout with [Communication settings].


4) Click [Refer] and it opens the window to select firmware.

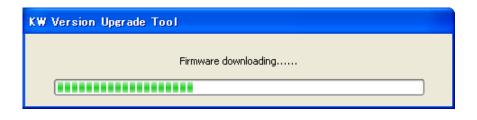
Select file to update "kw9m_verxxx_verup.kw9" and click [Open].

*You can download from our website the latest firmware.

5) When selected file name is displayed, click [Update].

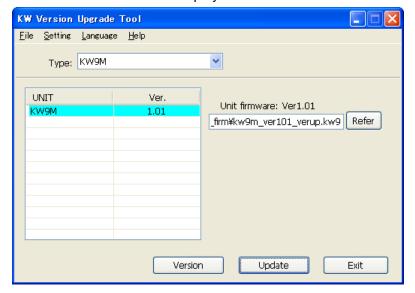

When timed out error is occurred, check the below.

- •Is Eco-POWER METER ready to update?
- •Is USB cable connected correctly?
- Are communication port and timeout value conformed?


Click [Version] and it displays the current version. After it shows the version, you need to update the firmware if it is not necessary. If not, Eco-POWER METER can't be used.

When you have used KW Version Upgrade Tool before, it displays the last updated firmware. If the firmware was moved, the error window will be appeared. Select firmware again and update it.

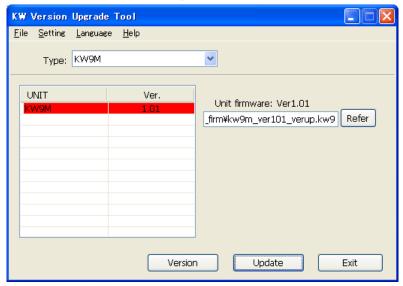
6) When it starts updating, the indicator is appeared and it updates to the selected firmware.


· 6

Do not turn off Eco-POWER METER.

7) When it completes updating the firmware, the complete window will be appeared. Click [OK].

8) Cell of unit that its firmware is updated correctly is blue.
You can confirm with the display of Eco-POWER METER and the display will return to measuring.



[When it doesn't update correctly]

After completing download, cell of unit that updating is failure is red.

On the display of Eco-POWER METER, [PROG] is displayed on the upper line and [- - - -] is displayed on the middle line.

Check and confirm the wiring of Eco-POWER METER and so on and update again.

9) Click [Exit] to close KW Version Upgrade Tool. You can use Eco-POWER METER as it is.

Chapter 9 Specifications 9.1 Main unit

Rated supply voltage	100 to 240V AC 100 to 300V DC				
Rated frequency	50/60Hz				
Nominal power consumption	Approx. 5VA (240V AC at Approx. 3W (240V DC at	*			
Inrush current	30A or less (240V AC/D0	C at 25°C)			
Allowable supply voltage	85 to 264V AC (85 to 110% of	f rated supply voltage)			
Allowable momentary power-off time	10ms				
	Accuracy guarantee -10 to	+ 55°C			
Ambient temperature	Operation -25 to	+ 55°C			
	Storage -25 to	+ 70°C			
Ambient humidity	30 to 85%RH (at 20°C) non-co				
Breakdown voltage (initial)	Between the isolated circuits: 2000V/1min	a) enclosure ⇔ all terminals b) between insulated circuits • power supply terminals ⇔other terminals			
Insulation resistance (initial)	Between the isolated circuits: 100 MΩ or more	•RS485 terminals ⇔other terminals •measured current input terminals ⇔ other terminals			
Vibration resistance	10 to 150Hz (7.5 minutes/cycle) single amplitude:0.075mm (1h on 3 axes) 10 to 55Hz (1 minute/cycle) single amplitude:0.375mm (1h on 3 axes)				
Shock resistance	Min. 294m/s² (5 times on 3 axes)				
Display method	LCD with backlight				
Display updated cycle	100 to 1000ms (set with setting mode)				
Power failure memory method	Internal memory (overwrite 10 ¹⁰ or more)				
Degree of protection	Front: IP51 Back: IP20				
Sea level altitude	Under 2,000m				
Dimensions W/H/D	96 x 96 x 56 mm (without terminal block) 96 x 96 x 68 mm (with terminal block)				
Weight	Approx. 450g				
Tambialana	Cable conductor cross section Single wire / stranded cable 1pc. 0.5 to 4mm² (AWG20to 12) Single wire/ stranded cable 2pcs. 0.5 to 2 mm² (AWG20 to 14)				
Terminal connection	Stripping length 7-8m				
		w M2.5			
	Tightening torque 0.4 to	0 0.5 N m			

9.2 Input Specifications

Me	easured data	AC sine				
Phas	se/wire system	Single-phase two-wire (1P2W) (max.3-circuit) Single-phase three-wire (1P3W) Three-phase three wire (3P3W) Three-phase four-wire (3P4W) (common)				
Applica	ble power system	100V syster	n, 200V	system, 400V system		
Meas	sured frequency	50/60Hz				
		Sampling		1.024MHz (approx.1.0 µs)		
Sa	ampling rate	Data update)	100ms 2.25s for Harmonics		
		1P2W	L-L	0-500V AC		
		1P3W	L-L	0-500V AC		
	Input voltage		L-N	0-250V AC		
	par romago	3P3W	L-L	0-500V AC		
		3P4W	L-L L-N	0-500V AC 0-289V AC		
	Impadance	2 MO ar ma	1			
V - 10	Impedance	2 MΩ or more (L-N; V1/V2/V3 - Vn)				
Voltage	Resolution	0.01V				
	Power consumption	Approx. 0.2VA (L-N; V1/V2/V3 - Vn)				
	Accuracy *1	0.2% *0.5% for 3-1 voltage of 1P3W, 3P3W and line voltage of 3P4W.				
	VT ratio	1.00 to 600.00 (set with setting mode) *Voltage transformer (VT) is required when you measure a load with voltage over rated voltage. (Rated secondary voltage of VT is 110V.) *When it input direct, VT ratio is set to 1.00.				
	Input current	Primary current 65535A or less				
	(with CT)	Secondary current 1A or 5A (set with setting mode)				
	Max. current	10A (200% of the rating)				
Current	Overload capacity	1000% of the rating for 3s				
Current	Resolution	0.001A				
	Power consumption	Approx. 0.2	VA			
	Accuracy *1 *2	0.2% *0.5% for 2(N)-phase of 1P3W and 2(S)-phase of 3P3W.				
		0.5%				
Power	Accuracy *1	Active power Class 0.5S (IEC 62053-22)				
		Reactive power Class 2 (IEC 62053-23)				
Tempera-	Acquirect	±5.0°C (aft	ter ambi	ent temperature correction with setting mode)		
ture	Accuracy	Passing 2 hours or more after energized				

^{*1} Without error of current transformers (CT) and voltage transformers (VT)
*2 Current less than 5% of rated value may be outside of accuracy assurance range according to CT setting.

[•]It measures from 0.1% of CT secondary current.

9.3 Communication Specifications

<RS485>

Interface		Conforming to RS485	
Communication n	nethod	Half-duplex	
Synchronous sys	tem	Synchronous communication method	
Isolation status		Isolated with the internal circuits	
Protocol		MEWTOCOL, MODBUS(RTU), DL/T645-2007 *1 (select with setting mode)	
Number of conne	cted unit	99 (max.) *2	
Transmission dist	ance	1200m *3	
Transmission speed		115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200bps (select with setting mode)	
	Data length	8bit (fixed)	
Transmission format	Parity	Not available / odd number / even number (select with setting mode)	
	Stop bit	1bit, 2bit (select with setting mode)	

^{*1} MEWTOCOL is the protocol for PLC from Panasonic.

DL/T645 is the China power-meter standard. Only DL/T645-2007 is supported.

< USB >

Electric specification	Conform to USB2.0 standard
Connector shape	USB series MiniB
Insulation method	Insulated to internal circuit
Transmission speed	12Mbps(Full-Speed)
Transmission function	Computer link (MEWTOCOL)

^{*}Install the dedicated USB driver before using USB port.

^{*2} For RS485 converter on the computer side, we recommend SI-35 and SI-35USB (from LINE EYE Co.,Ltd.). When using SI-35, SI-35USB or PLC from our company (which can be connected up to 99 units), up to 99 can be connected. In case using this system with the other devices, up to 31 can be connected.

^{*3} Please check with the actual devices when some commercial devices with RS485 interface are connected. The number of connected devices, transmission distance, and transmission speed may be different according to using transmission line.

^{*}Do not ground the signal wire of USB communication.

9.4 Self-diagnostic function

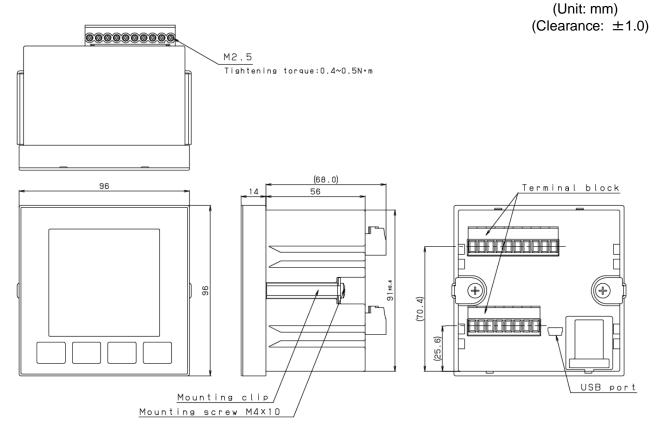
If an error occurs, the following indication will be given.

When several errors occur, [1] are indicated for the designated digits.

Indicator	Meaning	To recover	After recovery
0000001	Hardware breakdown	Change main unit due to the end of hardware	
00000100	Firmware update failure	Update again	Start with updating firmware.
00100000	Internal program error	Power on again	Before the abnormal
10000000	Memory breakdown or crash *	Change main unit due to the end of internal memory	

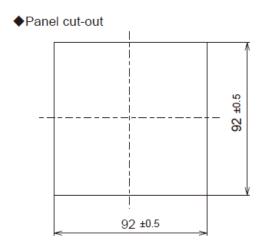
^{*}Includes the possibility that the internal memory life has expired.

9.5 Power Failure Memory


Eco-POWER METER memories integrated electric power and working status to internal memory until when power supply is off. (Power failure guarantee)

And every time to change each setting, each setting value is memorized to internal memory at the same time. Rewritable times are limited. Especially be careful if you set by communication.

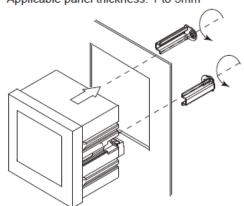
Chapter 10 Mounting


10.1 Dimensions

10.1.1 Main unit

10.2 Panel mounting

(Unit: mm)



Keep enough space for several mountings. recommended space:

130mm the left, right, top and bottom from center of the unit

◆Panel mounting

- 1) Remove the mounting clips from the unit.
- 2) Insert the unit from the front of the panel.
- 3) Attach the mounting clips at the both side of the case and secure in place with the screws.
 - (Tightening torque: approx. 0.2 to 0.3N·m)
- ·Applicable panel thickness: 1 to 5mm

Revision History

Issue Date	Manual No.	Content of revision
November, 2012	WUME-KW9M-01	First edition
February, 2013	WUME-KW9M-02	2 nd edition -Correct the errors -Add 3.5 Low Voltage Directive
April, 2013	WUME-KW9M-03	3 rd edition -Add How to update the firmware
September, 2013	WUME-KW9M-04	4 th edition -Add note for three-phase four-wire system wiring -Add condition for Low voltage directive
February, 2014	WUME-KW9M-05	5 th edition <change specs=""> -Maximum value of primary side current of CT <add functions=""> - Demand measurement - Measurement of current THD and voltage THD - Display updated cycle setting - Readout power factor status lead / lag</add></change>
July,2014	WUME-KW9M-06	6 th edition <change specs=""> Accuracy of power measurement - Power: 1.0% to 0.5% - Current, voltage: 0.5% to 0.2% <add functions=""> - Add registers for reset function</add></change>
April, 2015	WUME-KW9M-07	7 th edition -Add comments for recommended breaker and fuse -Add 'Symbol List'
July, 2015	WUME-KW9M-08	8 th edition -Add functions of current cut-off
February, 2017	WUME-KW9M-09	9 th edition -Add 115,200bps and 57,600bps for baud rate -Support to measure an integral active power with 0.01Wh unit
December, 2018	WUME-KW9M-10	10 th edition -Add function to save display item -Add function to initialize settings

e contact	Danasanis Industrial Davisos CLINIV Co. 14d
	Panasonic Industrial Devices SUNX Co., Ltd. ■ Overseas Sales Division (Head Office): 2431-1 Ushiyama-cho, Kasugai-shi, Aichi, 486-0901, Japan
	■ Telephone: +81-568-33-7861 ■ Facsimile: +81-568-33-8591 panasonic.net/id/pidsx/global
	About our sales network, please visit our website.

© Panasonic Industrial Devices SUNX Co., Ltd. 2018